
Database Systems Research Group
Heidelberg University

April 19, 2023

Software Practicals
Summer Semester 2023

1

Slides Online

The slides are available on our webpage
https://dbs.ifi.uni-heidelberg.de/teaching/current/

2

https://dbs.ifi.uni-heidelberg.de/teaching/

Organization

3

Outline
● Overview of topics (today)

○ Send application for a topic until Monday, April 24, 1pm
○ Assignment of topics by April 27

● First milestone (end of May)
○ Prototype / part of software
○ Summary of research (literature and related systems/tools)
○ Further milestones in agreement with supervisor

● End of practical (mid/end July)
○ Code has to be in local Gitlab of the database group
○ Presentation / demo of practical and software (10-12 minutes)
○ Report / documentation as Gitlab document (README.md)

4

Application
● Apply directly to supervisor via mail

○ Program of study, semester of study, matriculation number
○ List relevant course experience, including course grades
○ List other experience:

■ Side projects you are working on
■ “Anwendungsgebiet”
■ Job experience

○ Send your tentative schedule and milestones for the practical
○ Group work is not possible!

● It is recommended to apply for multiple topics (“top-3 list”)

Application is binding!
Don’t apply if you don’t want to do the practical!

5

Deadlines

● Generally meetings with supervisor every week
● Presentation: last week of July 2023
● Report & Gitlab upload: August 7, 2023
● No extension possible

Not finished = failed (grade 5,0)!

6

Assessment
● Credit points (Leistungspunkte)

○ Beginners Practical (IAP, 2 CP + 4 FÜK) [Bachelor students]
■ workload: 180 h (~1 ½ days/week)

○ Advanced Practical (IFP, 8 CP)
■ workload: 240 h (~2 days/week)

● Grading based on
○ code (readability, structure, functionality; code in local Gitlab)
○ documentation (README.md, code comments, documentation in Gitlab)
○ commitment and self-reliance
○ cool ideas!!

● IMPORTANT
○ talk to / communicate with your advisor (at least biweekly meetings)

7

Supervisors

● Michael Gertz (MG)
gertz@informatik.uni-heidelberg.de

● Satya Almasian (SA)
almasian@informatik.uni-heidelberg.de

● Jayson Salazar (JS)
salazar@informatik.uni-heidelberg.de

● John Ziegler (JZ)
ziegler@informatik.uni-heidelberg.de

● Ashish Chouhan (AC)
chouhan@informatik.uni-heidelberg.de

● Nicolas Reuter (NR)
reuter@informatik.uni-heidelberg.de

8

mailto:gertz@informatik.uni-heidelberg.de
mailto:almasian@informatik.uni-heidelberg.de
mailto:salazar@informatik.uni-heidelberg.de
mailto:ziegler@informatik.uni-heidelberg.de
mailto:chouhan@informatik.uni-heidelberg.de
mailto:reuter@informatik.uni-heidelberg.de

Project Topics
AP = Advanced Topic

BP = Beginners Topic (for BSc students)

9

Overview of Topics
1. Interface for Quantity Extractor, AP (Almasian)

2. Quantity and Concept Extraction with ChatGPT, BP (Gertz/Almasian)

3. Extracting Scientific Documents from Wikipedia, BP (Almasian)

4. Table of Content Crawler for Proceedings, AP (Gertz)

5. Office Document Reader and Analyzer, BP/AP (Gertz)

6. Trend Exploration UI, AP (Ziegler)

7. Dynamic Network Exploration, AP (Ziegler)

8. Acquisition, Analysis and NER on OPS Codes AP/BP (Salazar)

9. Package Integration for NER in Patient Records BP/AP (Salazar)

10. Crawler and Analyzer for PubMed Article Full Text, BP (Chouhan)

11. Aspect Based Temporal Clustering, AP (Chouhan)

12. Machine Learning in Web Browsers, AP/BP (Reuter)

13. Creating a Domain-Aware Web Table Corpus, AP (Reuter)
10

Given:
• A package implemented in previous practicals to identify and

normalize quantities in the text
• “The tower is 100m high”

→ value:100, unit: metre, concept: tower, change: equal
Tasks:
• Create a web interface to interact with the package

AP: Interface for Quantity Extractor (SA)

Subtasks:
• Interface for on-demand extraction on the website
• Possibility of uploading documents and getting extractions as XML

Languages / Tools:
• Python; Flask; frontend development skills (css, JS, svelte…)

11

Given:
• Sentences from news articles tagged with quantity information

Tasks:
• Use ChatGPT to extract quantity information for a sentence,

containing: (value, unit, change, concept)
• Apple hires 200 people:

→ value=200, unit=people, change=equal, concept=Apple.

AP: Quantity and Concept Extraction with ChatGPT (MG/SA)

Subtasks:
• Examine ChatGPT’s ability to standardize values, normalize unit and

find relevant nouns (concepts)
• Build a pipeline that gets sentences and outputs quantity information

Languages / Tools:
• Python 12

Given:
• List of “quantity heavy” topics from Wikipedia,

e.g., physics, medicine or math.
Tasks:
• Extract the pages and text data associated

with these topics
• Analyze quantity extractions

BP: Extracting Scientific Documents from Wikipedia (SA)

Subtasks:
• Investigate different quantity types (statistics)
• Store pages and quantity extraction results
• in OpenSearch

Languages / Tools:
• Python, OpenSearch 13

https://opensearch.org/

AP: Table of Content Crawler for Proceedings (MG)

Given:
• Many web sites list papers accepted

for conferences in unstructured fashion
(see, e.g., https://aclanthology.org/)

Tasks:
• Develop crawler that extracts paper

information from web sites
• Develop frontend that allows to search,

explore, and cluster papers

Subtasks:
• Design and implement document store based on OpenSearch.

Languages / Tools:
• Python; OpenSearch

14

https://aclanthology.org/
https://opensearch.org/
https://opensearch.org/

BP/AP: Office Document Reader and Analyzer (MG)

Given:
• Office documents based on Office Open XML

(.docx, .pptx, .xlsx)
Tasks:
• Develop pipeline to detect type of document

and convert it according some document
model for search and downstream NLP tasks

• AP: convert documents from Opensearch to .docx
Subtasks:
• Design and implement document store based on OpenSearch.

Languages / Tools:
• Python; OpenSearch

15

https://opensearch.org/
https://opensearch.org/

AP: Trend Exploration UI (JZ)

Given:
• REST API to access trends
• Twitter trends given as hashtag networks
• Political domain → see EPINetz project

Task:
• Extension of existing UI to explore trends

Subtasks:
• Feature to compare trends
• Highlighting of nodes/edges

Languages / Tools:
SvelteKit, Chart.js, D3.js, TypeScript

16

https://epinetz.de/

AP: Dynamic Network Exploration (JZ)

Given:
• Concept of app to visualize and explore network dynamics

→ Creative ideas are welcome!
Task:
• Software to visually explore temporal networks

Subtasks:
• Data import
• Network visualization
• Timeline exploration feature
• Snapshot sampling

Languages / Tools:
• JS framework (e.g., React), Cytoscape.js, TypeScript 17

BP(AP): Acquisition, Analysis and NER on OPS Codes (JS)

Given:
• Python library for Medical Thesaurus Correlation

(MedKEET)
• Access to OPS-Database and related medical

thesauri
Tasks:
• Acquire and analyze the structure and contents of

the OPS dataset.
• Extend MedKEET to process and annotate (naively)

OPS entries

Languages / Tools:
• Python, Pandas, Neo4J

 BP(AP): Package Integration for NER in Patient Records (JS)

Languages / Tools:
• Python, PostgreSQL

Given:
• PyCoNet, a prototype package aimed towards the

extraction of concept relationships from raw (medical) text.
• FHIRPACK, an open source FHIR data Python processing

toolkit
• Both developed jointly in the DBS and the UK-Essen

Tasks:
• Integrate and extend both packages so is-relationships

(NER) present in raw, semi-structured patient records
can be extracted and stored seamlessly

https://fhirpack.readthedocs.io/en/latest/
https://www.hl7.org/fhir/

BP: Crawler and Analyzer for PubMed Article Full Text (AC)

Given:
• Access to PubMed metadata and abstract

extraction script
Tasks:
• Extract full text from PubMed and store

it in OpenSearch
Subtasks:
• Realize backend to store extracted text

using OpenSearch
• Analyze the dataset and compute basic

properties
Languages / Tools:
• Python, OpenSearch

20

https://opensearch.org/
https://opensearch.org/
https://opensearch.org/

AP: Aspect Based Temporal Clustering (AC)

Given:
• Dataset containing ~5M PubMed abstracts,

metadata, and text embeddings
• Reference Paper

Tasks:
• Develop frontend that allows to perform temporal

clustering of PubMed abstracts
• On-demand clustering based on different

aspects, i.e., topics, keywords, entities, and
many more

Languages / Tools:
• Python, OpenSearch, FastAPI, Svelte

21

https://www.biorxiv.org/content/10.1101/2023.04.10.536208v1.full.pdf+html
https://opensearch.org/

BP/AP: Machine Learning in Web Browsers (NR)
Given:
• List of types of patterns on web pages,

e.g., countdowns, scarcity, ...
• Open-source browser extension that

can find some patterns using simple methods
Tasks:
• Implement a machine learning model in the browser extension to find

one or more pattern types (as proof-of-concept)
Subtasks:
• Explore available ML libraries for Javascript
• Examine feasibility of running ML directly in the browser (speed,

requirements)
Languages / Tools:
• Javascript, HTML, CSS, Python

22

https://dapde.de/en/dark-patterns-en/types-and-examples-en/

AP: Creating a Domain-Aware Web Table Corpus (NR)
Given:
• Common crawl web corpus
• Dresden Web Table Corpus extractor

source code (Java)
Tasks:
• Develop a pipeline in Python to create a web table corpus
• Find a method to classify web pages/tables into domain fields

Subtasks:
• Detect tables and classify them by type
• Classify web pages and make a selection
• Optional: Extract tables (convert them to dataframes)

Languages / Tools:
• Python, HTML, (Java)

23

https://wwwdb.inf.tu-dresden.de/misc/dwtc/
https://github.com/JulianEberius/dwtc-extractor

Slides Online

The slides are available on our webpage
https://dbs.ifi.uni-heidelberg.de/teaching/current/

24

https://dbs.ifi.uni-heidelberg.de/teaching/

