
Data Science Group
Heidelberg University

October 18, 2023

Software Practicals
Winter Semester 2023/24

1

Slides Online

The slides are available on our webpage
https://ds.ifi.uni-heidelberg.de/teaching/current/

2

https://dbs.ifi.uni-heidelberg.de/teaching/

Organization

3

Outline
● Overview of topics (today)

○ Send application for a topic until Monday, October 23, 1pm
○ Assignment of topics by October 25

● First milestone (before Christmas break)
○ Prototype / part of software
○ Summary of research (literature and related systems/tools)
○ Further milestones in agreement with supervisor

● End of practical (mid/end February)
○ Code has to be in local Gitlab of the database group
○ Presentation / demo of practical and software (10-12 minutes)
○ Report / documentation as Gitlab document (README.md)

4

Application
● Apply directly to supervisor via mail

○ Program of study, semester of study, matriculation number
○ List relevant course experience, including course grades
○ List other experience:

■ Side projects you are working on
■ “Anwendungsgebiet” / Application Field
■ Job and project experience

○ Send your tentative schedule and milestones for the practical
○ Group work is not possible!

● It is recommended to apply for multiple topics (e.g., “top-3 list”)

Application is binding!
Don’t apply if you don’t want to do the practical!

5

Deadlines

● In general: biweekly meetings with supervisor
● Presentation: end of February 2024
● Report & Gitlab upload: end of February 2024
● No extension possible

Not finished = failed (grade 5,0)!

6

Assessment
● Credit points (Leistungspunkte)

○ Beginners Practical (IAP, 2 CP + 4 FÜK) [Bachelor students]
■ workload: 180 h (~1 ½ days/week)

○ Advanced Practical (IFP, 8 CP)
■ workload: 240 h (~2 days/week)

● Grading based on
○ code (readability, structure, functionality; code in local Gitlab)
○ documentation (README.md, code comments, documentation in Gitlab)
○ commitment and self-reliance
○ cool ideas!!

● IMPORTANT
○ talk to / communicate with your advisor (at least biweekly meetings)

7

Supervisors

● Michael Gertz (MG)
gertz@informatik.uni-heidelberg.de

● Satya Almasian (SA)
almasian@informatik.uni-heidelberg.de

● Jayson Salazar (JS)
salazar@informatik.uni-heidelberg.de

● John Ziegler (JZ)
ziegler@informatik.uni-heidelberg.de

● Ashish Chouhan (AC)
chouhan@informatik.uni-heidelberg.de

● Nicolas Reuter (NR)
reuter@informatik.uni-heidelberg.de

8

mailto:gertz@informatik.uni-heidelberg.de
mailto:almasian@informatik.uni-heidelberg.de
mailto:salazar@informatik.uni-heidelberg.de
mailto:ziegler@informatik.uni-heidelberg.de
mailto:chouhan@informatik.uni-heidelberg.de
mailto:reuter@informatik.uni-heidelberg.de

Project Topics
AP = Advanced Topic

BP = Beginners Topic (for BSc students)

9

Overview of Topics
1. Quantity and Concept Extraction with ChatGPT, BP (Gertz/Almasian)

2. Form Extraction from OCRed Documents, AP (Gertz)

3. Graph Library Benchmark, AP (Ziegler)

4. Visual Benchmark of Dimensionality Reduction for Big, Sparse Graphs AP (Salazar)

5. Acquisition, Analysis and NER on OPS Codes AP/BP (Salazar)

6. Package Integration for NER in Patient Records BP/AP (Salazar)

7. Unlocking Legal Insights, BP (Gertz/Chouhan)

8. Concept Exploration UI, AP (Chouhan)

9. Temporal Evolution of Legal Documents, BP/AP (Chouhan)

10. Table Structure Recognition with Ruling Lines, AP/BP (Reuter)

11. Creating a PDF Table Annotation Tool, AP (Reuter)

12. Creating a Domain-Aware PDF Table Corpus, AP (Reuter)

10

Given:
• Sentences from news articles tagged with quantity information

Tasks:
• Use ChatGPT to extract quantity information for a sentence,

containing <value, unit, change, concept>
• “Apple hires 200 people”

→ value=200, unit=people, change=equal, concept=Apple.

BP: Quantity and Concept Extraction with ChatGPT (MG/SA)

Subtasks:
• Examine ChatGPT’s ability to standardize values, normalize unit, and

find relevant nouns (concepts)
• Build a pipeline that gets sentences and outputs quantity information

Languages / Tools:
• Python 11

AP: Form Extraction from OCRed Documents (MG)

Given:
• Collection OCRed forms, e.g., receipts, bills, table like structure
• Popular libraries and tools to perform AI-based layout analysis

Tasks:
• Evaluate quality of different tools,

frameworks and libraries
• Build framework that allows (visual)

comparison of different tools
Subtasks:
• Familiarize yourself with document layout

analysis, LayoutLM
Languages / Tools:
• Python, Hugging Face

12

https://konfuzio.com/en/document-layout-analysis/
https://konfuzio.com/en/document-layout-analysis/
https://huggingface.co/docs/transformers/model_doc/layoutlm

AP: Graph Library Benchmark (JZ)

Given:
• Various open-source graph libraries
• Past benchmarks exist, e.g., here

Task:
• Conduct performance benchmark of different graph libraries

Subtasks:
• Prepare benchmark dataset(s)
• Create “lab” environment
• Special focus on network dynamics

Languages / Tools:
• Python, graph-tool, igraph, NetworkX, …

13

https://www.timlrx.com/blog/benchmark-of-popular-graph-network-packages-v2

AP: Visual DimRed Benchmark for Graphs AP (JS)

Given:
• Graphs can be built off almost any sort of text domain

data, but they also grow quickly and are sparse.
• Representing, grouping and visualizing their labels as

well as properties is of crucial importance in our group
Tasks:
• Generate a synthetic graph dataset based on given,

well-defined properties from real-world data examples.
• Build an application that allows a user to poll graph

data, brush(filter) it and visualize it based on two
chosen algorithms (e.g. PCA, t-SNE and UMAP).

Languages / Tools:
• Python, Javascript (Cytoscape.js+Svelte), Apache AGE (or Neo4J)

BP(AP): Acquisition, Analysis and NER on OPS Codes (JS)

Given:
• Python library for Medical Thesaurus Correlation

(MedKEET)
• Access to OPS-Database and related medical

thesauri
Tasks:
• Acquire and analyze the structure and contents of

the OPS dataset.
• Extend MedKEET to process and annotate (naively)

OPS entries

Languages / Tools:
• Python, Pandas, Neo4J

 BP(AP): Package Integration for NER in Patient Records (JS)

Languages / Tools:
• Python, PostgreSQL

Given:
• PyCoNet, a prototype package aimed towards the

extraction of concept relationships from raw (medical) text.
• FHIRPACK, an open source FHIR data Python processing

toolkit
• Both developed jointly in the DBS and the UK-Essen

Tasks:
• Integrate and extend both packages so is-relationships

(NER) present in raw, semi-structured patient records
can be extracted and stored seamlessly

https://fhirpack.readthedocs.io/en/latest/
https://www.hl7.org/fhir/

BP: Unlocking Legal Insights (MG/AC)

Given:
• People post information about legal

domain on LinkedIn (see, e.g., Martin Ebers)
Tasks:
• Extract articles, documents, and posts related

to legal domain and store it in OpenSearch
Subtasks:
• Realize backend to store extracted

information using OpenSearch
• Analyze dataset and compute basic

statistics
Languages / Tools:
• Python, OpenSearch

17Link

https://www.linkedin.com/in/martin-ebers-4984444b/
https://opensearch.org/
https://opensearch.org/
https://opensearch.org/
https://blog.ai-laws.org/new-ai-regulation-how-will-it-affect-insurance-risk-assessment-in-the-ai-age/

AP: Concept Exploration UI (AC)

Given:
• API provides weighted word

co-occurrence network for concept
exploration in Pubmed abstracts

Tasks:
• Implementation of UI to explore concept

Subtasks:
• Handle API access
• Visualization of networks

Languages / Tools:

• Python, Sveltekit, eCharts, Cytoscape.js

18

https://kit.svelte.dev/
https://echarts.apache.org/examples/en/index.html#chart-type-graph
https://js.cytoscape.org/

BP/AP: Temporal Evolution of Legal Documents (AC)

Given:
• Consolidated text from EUR-Lex website (HTML)

Tasks:
• Fetch consolidated

text information
• AP: develop frontend

to search and explore
evolution of regulations

Subtasks:
• Design and implement document store based on OpenSearch and

PostgreSQL
Languages / Tools:
• Python; SPARQL; OpenSearch; PostgreSQL 19

https://eur-lex.europa.eu/search.html?SUBDOM_INIT=CONSLEG&DTS_SUBDOM=CONSLEG&DTS_DOM=EU_LAW&lang=en&type=advanced&qid=1692475710122
https://opensearch.org/
https://www.postgresql.org/
https://op.europa.eu/en/publication-detail/-/publication/658088eb-c071-11e8-9893-01aa75ed71a1/language-en/format-PDF/source-76875949
https://opensearch.org/
https://www.postgresql.org/

Given:
• FinTabNet dataset of annotated PDFs

with Financial Report Tables
Task:
• Implement a method that uses ruling lines

to extract the structure of complex tables
(mapping cells to the correct headers)

Subtasks:
• Identify tables with rulings in the dataset and extract the ruling lines
• Recognize if a ruling belongs to a heading and assign it to it
• Use the position and size of the lines to extract the table structure

Languages / Tools:
• Python, pdfplumber, (Docker)

BP/AP: Table Structure Recognition with Ruling Lines (NR)

20

https://developer.ibm.com/exchanges/data/all/fintabnet/
https://github.com/jsvine/pdfplumber

AP: Creating a PDF Table Annotation Tool (NR)
Given:
• Reference annotations: FinTabNet dataset
• Possible starting point: table extraction

tool from previous practical
Task:
• Create a tool with a simple UI for annotating (complex) tables

Subtasks:
• Extract the tables from PDFs (camelot and tabula-py can be used)
• Create a UI with which the extracted tables can be edited to get a

proper annotation
• Convert the annotations to the target format (see FinTabNet)

Languages / Tools:
• Python, JavaScript (e.g. node.js, Svelte), Docker

21

https://developer.ibm.com/exchanges/data/all/fintabnet/
https://github.com/camelot-dev/camelot
https://github.com/chezou/tabula-py

AP: Creating a Domain-Aware PDF Table Corpus (NR)
Given:
• A very large dataset of PDFs, e.g.

CC-MAIN-2021-31-PDF-UNTRUNCATED
Tasks:
• Create a subset of the dataset containing only PDFs with tables
• Classify the PDFs by domain/content, language (and table type)

Subtasks:
• Implement a pipeline for table detection, metadata extraction and

PDF classification
• Basic data cleanup: find duplicates and spam/useless documents

using the extracted data
• Optional: Implement a method to crawl new PDFs with tables

Languages / Tools:
• Python, PostgreSQL, (Docker, OpenSearch)

22

https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/

Slides Online

The slides are available on our webpage
https://ds.ifi.uni-heidelberg.de/teaching/current/

23

https://dbs.ifi.uni-heidelberg.de/teaching/

