
Data Science Group
Heidelberg University

April 16, 2025

Software Practicals
Summer Semester 2025

1

Slides Online

The slides are available on our webpage
https://ds.ifi.uni-heidelberg.de/teaching/current/

2

https://ds.ifi.uni-heidelberg.de/teaching/

Organization

3

Outline
● Overview of topics (today)

○ Send application for a topic until Monday, April 21, 1pm
○ Assignment of topics by April 24

● First milestone (end of May)
○ Prototype / part of software
○ Summary of research (literature and related systems/tools)
○ Further milestones in agreement with supervisor

● End of practical (mid/end July)
○ Code has to be in local Gitlab of the Data Science group
○ Presentation / demo of practical and software (10-12 minutes)
○ Report / documentation as Gitlab document (README.md)

4

Application
● Apply directly to supervisor via mail

○ Program of study, semester of study, matriculation number
○ List relevant course experience, including course grades
○ List other experience:

■ Side projects you are working on
■ “Anwendungsgebiet”
■ Job experience

○ Send your tentative schedule and milestones for the practical
● It is recommended to apply for multiple topics (“top-3 list”)

Application is binding!
Don’t apply if you don’t want to do the practical!

5

Deadlines

● Generally meetings with supervisor every week. Come
prepared for the meetings!

● Presentation: last week of July 2025
● Report & Gitlab upload: August 4, 2025
● No extension possible

Not finished = failed (grade 5,0)!

6

Assessment
● Credit points (Leistungspunkte)

○ Beginners Practical (IAP, 2 CP + 4 FÜK) [Bachelor students]
■ workload: 180 h (~1 ½ days/week)

○ Advanced Practical / Master Practical (IFP / IMP, 8 CP)
■ workload: 240 h (~2 days/week)

● Grading based on
○ code (readability, structure, functionality; code in local GitLab)
○ documentation (README.md, code comments, documentation in GitLab)
○ commitment and self-reliance
○ cool ideas!!

● IMPORTANT
○ regular communication with your advisor (biweekly meetings)

7

Supervisors
● Michael Gertz (MG)

gertz@informatik.uni-heidelberg.de

● Ashish Chouhan (AC)
chouhan@informatik.uni-heidelberg.de

● Nicolas Reuter (NR)
reuter@informatik.uni-heidelberg.de

● Marina Walther (MW)
walther@informatik.uni-heidelberg.de

8

mailto:gertz@informatik.uni-heidelberg.de
mailto:chouhan@informatik.uni-heidelberg.de
mailto:reuter@informatik.uni-heidelberg.de
mailto:walther@informatik.uni-heidelberg.de

Project Topics
AP = Advanced Topic

BP = Beginners Topic (for BSc students)

9

Overview of Topics
1. Graph Retrieval Augmented Generation (Part 1), AP (Chouhan)

2. Graph Retrieval Augmented Generation (Part 2), AP (Chouhan)

3. Human Feedback App for Conversational AI (Frontend, UI/UX), AP (Walther)

4. Human Feedback App for Conversational AI (Backend, DevOps), AP (Walther)

5. Generating SQL Exercises using LLMs, BP/AP (Reuter)

6. Evaluating LLMs on Tabular Question Answering, AP (Reuter)

7. Table Retrieval for QA, AP (Reuter)

8. GoodNews Classifier, AP (Gertz)

9. GoodNews Classifier, AP (Gertz)

10.Audio and Video Chatbot (Part 1), AP (Gertz)

11.Audio and Video Chatbot (Part 2), AP (Gertz)

12.Vision Models for Correspondences, AP (Gertz)

13.Chat with your PDF, BP (Gertz)
10

Given:
• Energy Legal documents from EUR-Lex and EuroVoc Knowledge

Graph (KG) associated with legal documents
Tasks:
• Leveraging KG for answer

generation in RAG
Subtasks:
• Collect information and realize backend to

store information using OpenSearch
• Generate QA pairs for evaluation purposes
• Retrieved information refinement leveraging KG
• Evaluating and comparing with baselines
Languages / Tools:
• Python, SPARQL, OpenSearch, LangChain 11

AP: Graph Retrieval Augmented Generation - Part 1 (AC)

https://eur-lex.europa.eu/search.html?name=browse-by%3Alegislation-in-force&type=named&displayProfile=allRelAllConsDocProfile&qid=1743096540375&CC_1_CODED=12&page=1
https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/eurovoc
https://opensearch.org/
https://opensearch.org/
https://www.langchain.com/

Given:
• Energy Legal documents from EUR-Lex and EuroVoc Knowledge

Graph (KG) associated with legal documents
Tasks:
• Leveraging KG for answer

generation in RAG
Subtasks:
• Collect information and realize backend to

store information using OpenSearch
• Generate QA pairs for evaluation purposes
• Query refinement leveraging KG
• Evaluating and comparing with baselines

AP: Graph Retrieval Augmented Generation - Part 2 (AC)

Languages / Tools:
• Python, SPARQL, OpenSearch, LangChain 12

https://eur-lex.europa.eu/search.html?name=browse-by%3Alegislation-in-force&type=named&displayProfile=allRelAllConsDocProfile&qid=1743096540375&CC_1_CODED=12&page=1
https://op.europa.eu/en/web/eu-vocabularies/dataset/-/resource?uri=http://publications.europa.eu/resource/dataset/eurovoc
https://opensearch.org/
https://opensearch.org/
https://www.langchain.com/

Given:
• Conversational data (from digital assistants)
• Test users: Medical students, medical professionals
Task:
• Work together in a small, agile team
• Build frontend to

– Login test users
– Show conversations, make them explorable
– Show context of digital assistants that are evaluated
– Collect and store (medical) feedback

• Setup data storage for Login, Feedback
• Build API
• Deploy on our infrastructure (help provided)

2+ APs: Human Feedback App for Conversational AI (MW)

13

Given:
• UI design
• Code repository with docker compose project
Task:
• Build frontend components (previous slide)
• Create workflows to explore conversations and give

feedback

AP: Human Feedback App - Frontend, UI/UX (MW)

Subtasks:
• Login component (auth.js)
• Conversation explorer
• Feedback form and submit
Languages / Tools / Platforms:
• Svelte/SvelteKit, ts, Tailwind, Auth.js, Docker + Docker Compose,

Gitlab,... 14

Given:
• Code repository with docker compose project
• Conversational data DB
Task:
• Plan and implement backend & API services
• Manage deployment on local infrastructure

AP: Human Feedback App - Backend, DevOps (MW)

Subtasks:
• Familiarize with design and deployment of microservice architectures
• Plan and implement login and feedback data service
• Learn about DevOps and bring it to the team
Languages / Tools / Platforms:
• SvelteKit, ts, Node, Docker + Docker Compose, Gitlab, MySQL, …

15

BP/AP: Generating SQL Exercises using LLMs (NR)
Given:
• Example database
• Sample SQL exercises and their solutions
• Source code for existing NL-to-SQL pipeline
Tasks:
• Build pipeline to generate natural language

exercises and matching SQL queries over the given schema
Subtasks:
• Cover variety of query types (e.g., selections, joins, aggregations, …)
• Evaluate clarity, ambiguity and correctness of generated exercises
• Test how well NL-to-SQL pipeline performs on generated questions

Languages / Tools:
• Python, SQL, LangChain or Llamaindex, OpenAI

16

https://www.langchain.com/
https://www.llamaindex.ai/

AP: Evaluating LLMs on Tabular Question Answering (NR)

Given:
• Set of HTML documents containing tables
Tasks:
• Evaluate the performance of different LLMs

in answering questions using data from tables
Subtasks:
• Create sample questions for selected tables
• Try different formats for tables as input to LLMs (e.g., HTML, textual

description, comma-separated cells, JSON, ...)
• Analyze impact of structural variations (e.g., merged cells, row order,

empty cells, multi-row headers, …)
Languages / Tools:
• Python, LangChain or Llamaindex, OpenAI

17

https://www.langchain.com/
https://www.llamaindex.ai/

AP: Table Retrieval for QA (NR)

Given:
• Set of HTML documents containing tables
Tasks:
• Evaluate how different table representations

affect retrieval performance
Subtasks:
• Create sample questions for selected tables
• Build retrieval pipeline to select relevant tables based on questions
• Try different formats for indexing tables (e.g., HTML, textual

description, comma-separated cells, JSON, ...)
• Evaluate retrieval quality using standard metrics (Recall, Precision, …)
Languages / Tools:
• Python, LangChain or Llamaindex, OpenAI

18

https://www.langchain.com/
https://www.llamaindex.ai/

Given:
• Repository of (German) News Articles
• Crawler for some major news outlets
Tasks:
• Train, evaluate and deploy classifier for

“Good News”

AP: GoodNews Classifier (MG)

Subtasks:
• Develop model to describe what “good news” is
• Investigate different classifiers for news articles
Languages / Tools / Platforms:
• Python, scikit-learn, …

19

https://scikit-learn.org/stable/

Given:
• Pipeline that filters “good news” from a

stream of news articles
Tasks:
• Design and implement a frontend to query

“Good News”

AP: GoodNews Platform (MG)

Subtasks:
• Develop query model and approach (keyword, semantic)
• Evaluate quality and performance
Languages / Tools / Platforms:
• Python, OpenSearch, Frontend Framework (streamlit, django, ,

Svelte, …)
20

https://opensearch.org/

Given:
• Standard pipeline for RAG-based questions answering

over some text corpus, including Web frontend
Task:
• Instead of typing questions, users use a

voice interface to interact with the system
• Design, evaluate, and deploy (open source) voice assistant

AP: Audio and Video Chatbot (Part 1) (MG)

Subtasks:
• Develop framework to integrated different open source speech

recognition components into RAG pipeline
• Deploy and evaluate different components for German and English
Languages / Tools / Platforms:
• Python (LangChain or Llamaindex)

21

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/
https://www.langchain.com/
https://www.llamaindex.ai/

Given:
• RAG-based questions answering pipeline,

including Web frontend with speech recognition
Task:
• Instead of only audio feedback from system, have

avatar like response composed of audio and video
• Design, evaluate, and deploy (open source) avatar frameworks

AP: Audio and Video Chatbot (Part 2) (MG)

Subtasks:
• Develop framework to integrated different open source avator

recognition components into RAG pipeline
• Deploy avatar and evaluate different chat scenarios
Languages / Tools / Platforms:
• Python (OpenAvatar, Avatarify, Ready Player Me, …), Open WebUI

22

https://blogs.nvidia.com/blog/what-is-retrieval-augmented-generation/

Given:
• Theologians’ Correspondence in the Southwest

of the Empire in the Early Modern Period (1550-1620)
• Lettes (scan) and transcription (plain text)
Tasks:
• Design and implement a framework to upload scans

and transcribe them by vision model

AP: Vision Models for Correspondences (MG)

Subtasks:
• Compare different commercial and open source vision models
• Design and implement proper Web frontend
Languages / Tools / Platforms:
• Python, Ollama, LangChain, Open WebUI

23

https://ollama.com/
https://www.langchain.com/
https://openwebui.com/

Given:
• Large PDF documents, such as a textbook
Tasks:
• Design and implement a framework to “chat” with

the PDF, i.e., a conversational AI that includes
question answering

BP: Chat with your PDF (MG)

Subtasks:
• Design and implement proper Web frontend to upload PDF

and have conversation
• Implement proper conversational chatbot
Languages / Tools / Platforms:
• Python, Ollama, LangChain, Open WebUI

24

https://ollama.com/
https://www.langchain.com/
https://openwebui.com/

Slides Online

The slides are available on our webpage
https://ds.ifi.uni-heidelberg.de/teaching/current/

25

https://ds.ifi.uni-heidelberg.de/teaching/

