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ABSTRACT
Real world events, such as historic incidents, typically con-
tain both spatial and temporal aspects and involve a specific
group of persons. This is reflected in the descriptions of
events in textual sources, which contain mentions of named
entities and dates. Given a large collection of documents,
however, such descriptions may be incomplete in a single
document, or spread across multiple documents. In these
cases, it is beneficial to leverage partial information about
the entities that are involved in an event to extract missing
information. In this paper, we introduce the LOAD model
for cross-document event extraction in large-scale document
collections. The graph-based model relies on co-occurrences
of named entities belonging to the classes locations, organi-
zations, actors, and dates and puts them in the context of
surrounding terms. As such, the model allows for efficient
queries and can be updated incrementally in negligible time
to reflect changes to the underlying document collection. We
discuss the versatility of this approach for event summariza-
tion, the completion of partial event information, and the
extraction of descriptions for named entities and dates. We
create and provide a LOAD graph for the documents in the
English Wikipedia from named entities extracted by state-
of-the-art NER tools. Based on an evaluation set of historic
data that include summaries of diverse events, we evaluate
the resulting graph. We find that the model not only allows
for near real-time retrieval of information from the underly-
ing document collection, but also provides a comprehensive
framework for browsing and summarizing event data.
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1. INTRODUCTION
The description of events is one of the core concepts of hu-

man communication, as we desire to not only speak about
the way things are, but also about how they change. It
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thus comes as no surprise that the detection, extraction and
analysis of events plays a pivotal role in natural language
processing. As a result, a lot of research has already been
devoted to these tasks, and existing works focus on the ex-
traction of events and temporal facts from more or less un-
structured textual sources such as news articles [24, 27], so-
cial media [16], Twitter [3, 32], Wikipedia articles [13, 28, 41]
or even Wikipedia edits [19, 25]. Some authors take the op-
posite approach and link Wikipedia events to historic news
articles [29]. The breadth of these applications is reflected in
the number of different definitions for the term event in the
literature. Here, we view an event in analogy to the defini-
tion given for the TDT task [8] as “something that happens
at a given place and time between a group of actors.” Thus,
we regard events as something at the intersection of time,
location and involved actors, either individually or in or-
ganizations of multiple persons. In these cases, the void of
structural information in unstructured textual sources is one
of the greatest challenges, albeit one that can be ameliorated
by focussing on the structure of the events themselves. On
a language level, this is reflected in the original ACE defini-
tion of event detection [10] and has been utilized for tasks
such as event threading [30] and incident threading [12]. On
a higher level and across documents, however, with prior
knowledge of already extracted named entities that are not
necessarily contained within the sentences that correspond
to the traditional definition of events, a local approach alone
is not sufficient.

Given the definition of an event through the involved en-
tities, the information pertaining to a specific event may
be spread across several pages and not provided in one sin-
gle context. Consider, for example, the documentation of
the Olympic Games in Wikipedia. For each iteration of the
games, there are pages that go into great detail about the
games themselves, along with a multitude of pages about in-
dividual athletes. However, not all information about events
at the games can be found on the central page, while the
pages of individual athletes may be lacking important in-
formation such as exact dates or even the location, and
merely reference to the Olympic Games of a given year.
Thus, only the combination of data from multiple pages al-
lows the reconstruction of all pieces of an event, including
the place, time, and involved participants. As a result, the
tasks of event extraction and summarization are closely tied
to named entity extraction and entity linking. For large
document collections, such a global approach thus requires
the inclusion of efficient indexing strategies of the involved
entities and documents in the process.



When considering events as the co-occurrences of named
entities of different types, we are also no longer bound by
the concepts of one sense per discourse [15] or one sense
per collocation [42]. While these have been shown to be
valid in most situations and thus acceptable assumptions,
they leave room for improvement as the task of disambigua-
tion becomes less taxing when multiple entities of differing
classes are involved in a given context. Given the close link
between event detection and named entity extraction, a rep-
resentation of the data that accounts for this seems sensible,
especially if it enables queries to the data in a similar fash-
ion. This approach is supported by recent research into web
query evaluation, where the importance of the distinction
between so called content words and intent words has been
highlighted [34]. We find that this concept can be applied to
the browsing of event data, where membership of query en-
tities to a certain class is known at query formulation time.
By using a structure for queries that reflects the structure of
the event data itself, we can leverage this information that
would otherwise be lost.

While numerous systems and approaches exist that enable
browsing of extracted information or query results based on
temporal characteristics as a timeline [3, 26, 35, 40], there
are others that allow browsing on a spatial dimension in-
stead [2]. With regard to events, however, we argue that
the temporal, geographic and social components are inex-
tricably interwoven and retain their full semantic meaning
only within this entire context. Any method for the extrac-
tion and representation of events should therefore include all
of these components (or entities) and assign to them equal
importance in the underlying model. Here, we provide an
important step in this direction and demonstrate the flexi-
bility of such an approach, not just for event extraction but
also for related tasks such as summarization and the gener-
ation of timelines.

Contributions. Our contributions are twofold. (i) We
define the LOAD model for the representation and index-
ing of named entities for the task of event retrieval and de-
scription, which is versatile and well suited to related tasks
such as event and entity summarization or entity linking.
(ii) We provide an instantiation of our model on the En-
glish Wikipedia, which we make available to the research
community1, including the code for creating and using such
a graph, as well as the evaluation data sets.

Structure. In Section 2, we discuss prior and related
work, before we present our model in detail in Section 3.
Afterwards, we discuss implementation strategies and an ap-
plication of the model to the English Wikipedia in Section 4.
In Section 5, we evaluate the LOAD graph for Wikipedia
against a ground truth that is based on a This Day in His-
tory data set. We give a summary and outlook in Section 6.

2. RELATED WORK
Related work can be split into two broad categories, namely

the extraction of events or temporal facts and graph-based
information retrieval frameworks.

Extraction of temporal facts and events. Temporal
information is prevalent in many documents across domains
and provides a method of inducing structure in unstruc-

1The Wikipedia LOAD graph, a Java implementation of
our algorithm and interface, and the evaluation data can be
found at http://dbs.ifi.uni-heidelberg.de/?id=load

tured document collections due to the ordering aspects of
time. Thus, exploiting temporal information extracted from
documents has become an important part of information re-
trieval [6], which has recently seen a lot of advances in this
regard. Therefore, the following list is focussed on works
that are based on linking temporal and entity information
for event retrieval and description.

Using a news archive, Setty et al. generate timelines high-
lighting important dates for a specific user query (e.g., about
persons or events) [35]. Their approach exploits the docu-
ment creation times of news articles under the assumption
that the top-k time-travel query result for the topic of inter-
est changes significantly at important times. Huet et al. use
structured data in the form of a knowledge base to mine tem-
poral trends or assess the importance of entities [22]. In an
approach that is also based on an external knowledge base of
news articles, Gupta and Berberich identify time intervals of
interest for given keyword queries based on pseudo-relevant
documents [21]. They employ a probabilistic approach for
the selection of suitable documents for a given query and
generate a time interval from the contained temporal ex-
pressions. Kanhabua and Nejdl analyse temporal anchor
texts extracted from Wikipedia’s edit history to track and
detect the evolution of entities and events [25]. As in the ap-
proaches described above, temporal metadata (in this case,
the edit history) is used to discover time-related knowledge.

In contrast to these approaches, our method uses only a
document collection and exploits the temporal information
that is available in the unstructured content of the docu-
ments. Articles that are similar in this respect include the
analysis by Filannino and Nenadic, who extract temporal
footprints of objects, persons, or historic periods from en-
cyclopedic descriptions of Wikipedia articles [13]. Abujabal
and Berberich also address the problem of extracting events
from semantically annotated document collections. Based
on methods from frequent itemset mining, they identify and
rank events with relation to named entities [1]. In contrast
to our approach, however, they consider events to be rep-
resented by sentences and thus cannot extract events that
are spread across multiple documents. Kanhabua et al. as-
sess the importance of temporal expressions to events based
on entities and features [26]. They extract events based on
the co-occurrence of entities and locations, but restrict co-
occurrences to those within documents and single sentences.

While these approaches are similar to our work in exploit-
ing temporal information described in the documents’ text,
we do not analyse single Wikipedia pages or use concept
templates, but rather study the relationship between dates
and content (e.g., entities, events, or keywords) in a general
and global way. For this, we consider the full document col-
lection at once without limiting our knowledge extraction
to specific concepts. In addition, our model can be used
for a multi-way summarization approach for points in time,
entities and concepts.

There are also a number of systems for building knowl-
edge bases of temporal information or timelines. One such
system, CATE, extracts the context of entities (e.g., per-
sons) and presents them in a timeline structure [40]. Kuzey
and Weikum provide a framework for the extraction of tem-
poral facts and events from the content and structure of
Wikipedia articles by means of patterns and rules [28]. A
similar approach is used to extend YAGO to include tem-
poral knowledge [41]. Unlike these systems, we do not aim



to provide a knowledge base but a method of exploring and
browsing a previously unknown document collection of un-
structured text with respect to not only time but all entities
that participate in real-world events.

Graph-based information retrieval. Das Sarma et
al. build an entity dynamic relation graph to identify spe-
cific entities that participate in trending events, but do not
consider locations [9]. Jatowt et al. use a time-term asso-
ciation graph in an estimation of the focus time of entire
documents [23]. This graph is constructed from information
that is extracted from an external corpus of news articles.
Based on this association information, they identify discrim-
inative time-term associations and employ these to estimate
the focus time of given documents. Dutta and Weikum per-
form cross document co-reference resolution based on spec-
tral graph clustering of mentions [11]. In a study of query
methods, Bendersky and Croft use hypergraphs to model
the occurrence of arbitrary classes of entities in queries [4].
However, this model is only applied to the queries themselves
and not to the underlying data representation of the docu-
ments. The two works that are likely the most similar to
our approach with respect to the model are based on graph
representations of documents that facilitate Information Re-
trieval tasks. Blanco and Lioma explore a graph-based ap-
proach that models terms as nodes in a graph and weights
their connections based on co-occurrence counts [5]. Based
on this approach, they analyse the fitness of structural graph
metrics for document ranking, but do not include named
entities. Similarly, Rousseau and Vazirgiannis use an un-
weighted but directed graph to account for term order in
text representation, the so called graph-of-word model [33].
In contrast to our work, they focus on the sentence level and
do not include entities, which limits the possibilities of this
model in event extraction. A third paper that uses a method
similar to ours is from the field of citation analysis, where
Chakraborty et al. suggest a system for finding communities
in citation networks that uses a tripartite graph approach of
authors, venues and papers [7], which is similar in semantics
to our definition of actors, locations, and times.

The significant difference between our model and the above
mentioned approaches is the proximity-based method of rep-
resenting the co-occurrences of entities in the documents.
This factor has been shown to play a major role in the qual-
ity of the retrieved information [39] and has recently been
used by Geiß et al. to extract semantically meaningful net-
works of relations between entities of identical types from
Wikipedia [17, 18]. In this paper, we combine this concept of
text-based proximity with graph-based indexing of entities
that has been employed for the modelling of terms and tem-
poral expressions in a bipartite model [36]. We extend this
concept to a multi-partite approach that includes all classes
of entities that are of relevance to the task of event extrac-
tion. To this end, we provide an efficient representation of
co-occurring entities that allows for both ad-hoc browsing
of the entire data and real-time updates of the database in
the case of changes to the underlying document collection,
and take a step towards obtaining some of the functional-
ity behind Google’s Knowledge Graph for previously unseen
document collections without an external knowledge base.

3. MODEL
With the main task being the identification and repre-

sentation of events that emerge from the joint occurrence

of named entities and temporal expressions, we base our
model on the relationship between distinct classes of such
entities that can be found in document collections. The
most prominent class of involved entities are the actors in
an event. Generally, these correspond to the named entity
type of persons, but we use the more general term to also
include non-person actors in possible fictional settings, to
which the model is equally applicable. The underlying as-
sumption is that actors are singular individuals. In contrast,
we consider groups of people to be organizations, meaning
that in this model, an organization may describe a com-
pany, a political party or even a rock band. To represent
the geographic component, we include locations, which in
the most general formulation are points or areas in space at
which events take place. Finally, the temporal dimension
is included by dates. Here, we only consider dates and not
intervals, although a refinement of the model in such a way
that it includes a set of temporally ordered, discrete dates
as an interval is certainly possible. Since we are interested
in modelling and ultimately extracting the relationship be-
tween these entities, a graph is a natural choice for the model
as described in the following.

3.1 The LOAD graph model
Let P be a collection of documents (or pages) for which

we define the model. Each document p ∈ P consists of a
number of sentences s ∈ p. With S we denote the set of all
sentences in all documents, i.e., S :=

⋃
p∈P {s ∈ p}. Note

that, while two sentences may have identical content, we
consider them to be separate entities under this model. We
define an ordering τ : S → N that maps a sentence to its
index in the document that contains it. Assuming an under-
lying bag-of-words model, we can now treat a sentence as a
collection of words, which we partition into several classes in
accordance to the motivation given in Section 1. Note that
we do not make a distinction between words and expres-
sions that may consist of multiple words. For the purpose
of this paper, we consider words to be units within a text
that has already been tagged for named entities and dates.
Specifically, we distinguish between the classes locations L,
organizations O, actors A, and dates D, hence the acronym
LOAD. Any word in a sentence that is neither of the afore-
mentioned is considered to be a term. Thus, we define the
set of terms T as

T :=
⋃
s∈S

{w ∈ s | w /∈ L ∪O ∪A ∪D}. (1)

A sentence can thus be considered to be a multiset of entities
s ∈ (L ∪ O ∪ A ∪D ∪ T )∗. In the following, we refer to the
set of actors, locations, organizations, dates and terms as
entities. Based on these seven classes, we define their union
V := L∪O∪A∪D∪T ∪S∪P along with a function σ : V →
{L,O,A,D, T, S, P} that maps each element v ∈ V to its
original class σ(v). Note that we do not consider ambiguities
at this stage. Therefore, if a word has two meanings (e.g.,
Washington, which could be a person’s name or a location),
we consider these meanings to be represented by two distinct
elements of V that belong to different classes.

To obtain an undirected graph representation G = (V,E)
of the co-occurrences of these entities, sentences and pages,
we introduce a set of edges as defined in the following. Since
G is undirected, we do not make a distinction in notation
between the edges (v, w) and (w, v). To retain the seven



partitions of V , we disallow edges between nodes in the
same set, i.e., G is a multi-partite graph, such that for all
e = (v, w) : e ∈ E ⇒ σ(v) 6= σ(w). Since there exists a sur-
jection from S to P , we also exclude direct edges between
P and all further sets, as they are not necessary. Thus, we
obtain for all (v, w) ∈ E : w ∈ P ⇒ v ∈ S. A schematic
representation of the resulting graph structure is shown in
Figure 1.

To generate weights ω : E → R for the edges of the graph,
we introduce the concept of Instances I of entities. An in-
stance describes a distinct occurrence of an entity in a sen-
tence (and thus a page) and there exist surjective mappings
m : I → V from instances to entities and ms : I → S
from instances to sentences. For example, if an entity v oc-
curs twice on a given page p, there exist instances i and j
along with sentences si, sj ∈ p such that ms(i) = si and
ms(j) = sj as well as m(i) = m(j) = v. With Iv we denote
the set of all instances of entity v, i.e., Iv := {i ∈ I | m(i) =
v}. To generate edge weights based on these instances, we
furthermore distinguish between two different types of re-
lationships. The first type of relationship occurs between
sentences, pages and entities and describes a type of inclu-
sion. For the inclusion of entities v in sentences s, we simply
use the number of occurrences as a weight, i.e. we set

ω(v, s) := |{i ∈ I | m(i) = v ∧ms(i) = s}| (2)

We define the weight between sentences and pages analo-
gously, but note that the weight always equals 1 iff the page
contains the sentence and 0 if it does not. The second type of
relationship occurs between multiple entities and describes
a co-occurrence within sentences and pages. To arrive at a
definition of weights in this case, we first define the distance
δ between two instances as

δ(i, j) := |τ(ms(i))− τ(ms(j))| (3)

i.e., the distance equals the number of sentences between the
instances, or 0 if they occur in the same sentence. If i and j
do not occur on the same page, we set δ(i, j) := ∞. Based
on this distance, we define the weight of edges between two
entities v and w as

ω(v, w) :=
∑
i∈Iv
j∈Iw

exp(−δ(i, j)) (4)

i.e., we assign to all co-occurrences of instances of v and
w a weight that diminishes exponentially with the distance
between the two instances and derive the total edge weight
as the sum of weights for all instances. Without loss of
generality, we may treat edges with a weight of 0 as non-
existing in the resulting graph to obtain a sparser and more
efficient representation for the subsequent analysis. We thus
define the binary adjacency matrix of G with dimension |V |2
as Avw := 1 iff ω(v, w) > 0 and Avw := 0 otherwise. We
call the number of edges that are adjacent to a node v the
degree of v and write deg(v). Analogously, we define the
class-specific degree degx(v) of a node v as the number of
edges from v to other nodes w for which σ(w) = x.

3.2 Hierarchical completeness conditions
For some of the entities that we consider in this context,

there exist hierarchies that can be beneficial to include in
the graph representation. One type of hierarchy is given
by the granularity of dates, which includes years, months

Figure 1: Schematic view of terms over the LOAD
model along with their connections to the original
sentences and documents.

or days. To account for these differences in granularity, we
consider dates to be sets of time points for which an inclusion
hierarchy exists. That is, each day is included in a month
and the same relation holds between months and years. As a
result, we partition D into three subsets D = Dy∪Dm∪Dd.
This hierarchy can be reflected in the graph by requiring
that for all edges (d, v) ∈ E, if there exists a d′ ∈ D such
that d ⊂ d′, then we also have (d′, v) ∈ E and we adjust
the edge weight by setting ω(d′, v) = ω(d′, v) + ω(d, v), e.g.,
an edge between a day and another entity or sentence also
induces an edge between this entity and both the month
and year that include the day. An analogous hierarchical
completeness condition can be formulated for locations if a
geographic hierarchy of places is known.

A second kind of hierarchy can be defined for person names.
Here, we observe that persons are frequently referred to by
only parts of their full name, such as the first or last name.
As an example, Alan Turing may be referred to as Alan Tur-
ing, Turing, etc. However, all mentions refer to the same
person and induce co-occurrence relationships. Thus, we
employ an approach that is reciprocal to the inclusion condi-
tion for dates and split a name n into components n1, ..., nk,
for which we require that if there exists an edge (n, v) ∈ E
between the full name and some other entity v, then we also
include edges (n1, v), ..., (nk, v) and adjust the edge weight
accordingly. While it is possible to apply this scheme to the
names of organizations, these generally do not follow the
same naming conventions as persons. However, an appli-
cation to the names of locations is possible in cases where
geographic hierarchy information is missing.

3.3 Ranking functions
To leverage the graph representation and extract infor-

mation from the co-occurrences of entities in the document
collection, we employ ranking functions. For any given en-
tity, we can rank adjacent nodes in the graph representation
by the importance of their co-occurrences to obtain the most
relevant related entities. In other words, we obtain a ranking
of nodes in one set, depending on the strength of their con-
nections to nodes in other sets. The benefit of this approach
is the possibility of computing relevant neighbours efficiently
due to the graph representation, despite the overall size of
the document collection.

First, we consider a binary ranking function between two
sets of nodes. Thus, let X,Y ∈ {L,O,A,D, T} be two



classes of entities such that X 6= Y . We define a binary
ranking function as rXY : X → R|Y |, i.e., we map a node
v ∈ X to a vector of ranking scores such that each node in Y
is assigned a relevance score with regard to v. Thus, we can
determine the most relevant neighbours of a query entity v.

In order to instantiate the ranking function, we want to
find a way of ranking relevant nodes efficiently on a local
level, i.e., by using only the neighbourhood of that node.
Therefore, we employ a graph adaptation of the tf-idf score
that has been shown to work well in a bipartite graph set-
ting for ranking temporal expressions and terms [36], which
we further modify to include the distance-based weight be-
tween entities instead of simple co-occurrence counts. As
a measure of the relevance of co-occurrences between two
specific nodes, we build upon the analogy to terms that are
contained in a document by equating nodes y ∈ Y with
documents that “contain” the nodes x ∈ X they are con-
nected to (i.e., the entities they co-occur with). We then
observe that the weight ω(x, y) in the graph corresponds to
the overall strength of co-occurrences between x and y in
the document collection, meaning that it represents a kind
of term frequency (tf ). Similarly, the class-specific degree
of a node (i.e., the number of adjacent edges that lead to
nodes of the respective class) is equivalent to the frequency
with which it appears alongside entities of that particular
class. As such, it is a kind of document frequency and can
be used to compute an inverse document frequency (idf ).
By combining the two, we arrive at a version of the tf-idf
score that is adapted to the graph representation:

tf -idf(x, y) :=
1

f
ω(x, y) log

|Y |
degY (x)

(5)

To obtain a normalized ranking in the interval [0, 1], we di-
vide the resulting scores by a normalization factor f , which
is chosen as the maximum local tf-idf score:

f := max
y′∈Y

(tf -idf(x, y′)) (6)

By ranking all entities that are connected to a query en-
tity according to their normalized tf-idf scores, we obtain
the desired ranking. Since there is no difference between
the partitions of the graph from a graph-theoretic point of
view, we may input any of the classes as X and Y in any
combination. We are, however, not limited to binary rank-
ing functions. In the case of events that have a geographic
and temporal aspect and pertain to actors and locations (or
both), it may be required to rank the importance of entities
in one set with regard to entities from multiple other sets.
With the inclusion of terms, we thus need a function that
is of higher arity, i.e., we require a function r : Xn → R|Y |,
where the Xi are pairwise disjoint with Y . Here, we can use
a ranking that consists of a combination of the individual
rankings as defined in Equation 5, i.e.

r(~x, y) :=
1

n
η(~x, y)

n∑
i=1

r(xi, y) (7)

for a query vector ~x ∈ Xn. The parameter η enforces a local
cohesion, i.e., it ensures that only those candidate entities
count towards the ranking that are connected to at least two
query entities. Formally,

η(~x, y) :=

{
1 if

∑n
i=1

∑n
j>iAyxiAyxj > 1

0 otherwise
(8)

In regard to summarization as an application, it is possible
to extract a description of entities or a combination of enti-
ties as a ranking of adjacent terms with respect to the entity
(or entities). However, it may be more convenient to directly
extract entire sentences that are relevant to the provided en-
tities instead of just keywords. Similarly, with respect to the
task of entity linking, it may be pertinent to recommend well
suited pages (i.e., documents) for a combination of entities.
Thus, the ranking of sentences and documents is also of in-
terest and can be achieved easily within the graph model.
Formally, this requires a function r : Xn → R|Y |, where the
Xi ∈ {L,O,A,D, T} and Y ∈ {S, P}. Here, we employ a
straightforward instantiation of this ranking function as a
proof-of-concept, although more involved measures are cer-
tainly possible within the model. To do this, we count the
number of nodes in the query set that are connected to a
sentence (i.e., entities that are contained in the sentence) or
to all sentences within a page, respectively. For sentences s,
we thus arrive at the following instantiation of a ranking:

r(~x, s) :=

n∑
i=1

Asxi (9)

For pages p, we can use the fact that the edges between
sentences and pages are 0-1-valued to count the occurrences
of all query terms in sentences of a page and obtain

r(~x, p) :=
∑
s∈S

n∑
i=1

AsxiAsp (10)

Complexity. A key consideration for large document col-
lections is the running time. The ranking functions as de-
fined in Equations 5 and 7 can be computed efficiently in
O(〈degXY 〉〈degYX〉), where 〈degXY 〉 is the average set-
specific degree of nodes in X with respect to set Y . For
sparse graphs, these average degrees are smaller than the
number of nodes by orders of magnitude, thus making these
measures very efficient for the analysis of large document col-
lections. Given the size of graphs that are obtained for larger
document collections, this is a critical feature as we show in
Section 4, where these ranking functions allow for ad-hoc
ranking of neighbouring nodes. Beyond the presented rank-
ing functions, the graph representation can serve as an index
for further approaches based on entity co-occurrences.

4. APPLICATION AND EXPLORATION
In the following, we describe the technical details that are

relevant to the implementation of our model. We then apply
it to the English Wikipedia and discuss the resulting graph
as well as query performance.

4.1 Document processing
Based on the model presented in the previous section, the

implementation of a LOAD graph is fairly straightforward
by extracting named entities from sentences and connecting
them in a graph structure based on their distances in the
text. However, we note at this point that the title of this
paper was chosen due to the combinatorial explosion in the
number of edges that result from fully connecting all entities
that occur on a page, a process which creates a graph that is
prohibitively large for large document collections. While the
theory of the model is based on the assumption that entities
on the same page share some connection, regardless of their
distance in the text, long-distance connections are very weak



and mostly negligible due to the exponential decay in edge
weights. Therefore, we include a cut-off parameter c in the
algorithm that excludes edges if the distance between the
two instances is too large. Similarly, terms are less likely
to be related to entities outside of their own sentence, so
we limit the edges between terms and entities to those that
appear in the same sentence. Based on these considerations,
we arrive at the LOAD algorithm for constructing a graph
representation of a document collection (see Algorithm 1).
In the following, we discuss a number of aspects of practical
importance to the implementation.

Term extraction. The extraction of terms is not as
straightforward as it initially appears. Since terms are de-
fined as everything that is left over after entities have been
removed from a sentence, the deletion of entities is key. Ide-
ally, entities should not overlap, which would enable a struc-
tured deletion of entities from a sentence. In practice, over-
laps happen, especially if several annotation tools are used.
We find the simplest solution to be the use of a bitmap for
characters in a sentence to mark the covered text of enti-
ties for deletion. Afterwards, marked parts of a sentence
are removed and the remainder is considered for term gen-
eration. Stop words are removed to prevent high frequency
noise from masking the co-occurrences of content words.

Stemming. To reduce the size of the graph and group
related terms into one node for improved recall in query
answering, we recommend the use of a stemmer for term
processing. This makes it much easier to match semanti-
cally similar words in a query on the resulting graph. While
lemmatization would be preferable during the document pro-
cessing phase, it would not be compatible with queries on the

Algorithm 1 Creation of the LOAD graph based on the
output of NER, temporal tagger and sentence splitter. The
set function σ and distance function δ are defined in Section
3. The update function adds a new edge if it is not yet
contained in E or adds the value to the existing weight ω
if it already is. The cut-off parameter limits the number of
co-occurrences.
Input: Documents D, cut-off parameter c
1: Initialize V ← ∅, E ← ∅ and ω(i, j)← 0 ∀i, j
2: for d ∈ D do
3: Sd ← sentences in d
4: Nd ← entities in d
5: V ← V ∪ Sd ∪Nd ∪ {d}
6: for s ∈ Sd do
7: update E with (s, d, 1)
8: Ns ← s ∩Nd

9: Ts ← s \Ns

10: V ← V ∪ Ts

11: for t ∈ Ts do
12: update E with (t, s, 1)
13: for n ∈ Ns do
14: update E with (n, t, 1)

15: for n1 ∈ Nd do
16: Nd ← Nd \ {n1}
17: for n2 ∈ Nd do
18: if σ(n1) 6= σ(n2) and δ(n1, n2) ≤ c then
19: w ← exp(−δ(n1, n2))
20: update E with (n1, n2, w)

Output: G = (V,E, ω)

graph, as lemmatization is hardly possible on query terms
that are used outside of sentences.

Implementation architecture. As the resulting graph
can be quite large, we consider two architectures. A purely
memory-based approach is possible through the representa-
tion of the graph as a list of nodes with five types of adja-
cency lists, i.e., one adjacency list per adjacent class (thus,
six lists in the case of nodes representing sentences and one
for pages). Edge weights are stored in an identical structure.
While such a representation is highly efficient with regard to
query answering, it also requires large maps for the lookup
of entity names, which tend to take up large amounts of
memory. Alternatively, an external database can be used
to store most of the information. With efficient indexing,
the retrieval of node neighbourhoods is then slower but still
possible. Hybrid approaches between the two architecture
solutions are viable. For our experiments, we store only the
sentences in an external database, as these are equivalent in
size to the entire original document collection.

4.2 LOADing Wikipedia
To test the model on a large-scale document collection,

we use the English Wikipedia dump of June 2, 2015, as in-
put. Since the algorithm is designed to extract information
from unstructured text, we exclude info boxes, tables, ref-
erences, and pages of lists and thus only use the raw text
without any links or pre-existing annotations. For the to-
kenization, sentence-splitting, POS-tagging, lemmatization
and named entity recognition we use the Stanford Named
Entity Recognizer [14]. We employ the 3-class model trained
for CoNLL data to extract persons, organizations and loca-
tions per our definition of LOAD. As temporal tagger we use
Heideltime [38] instead of StanfordNER, since Wikipedia ar-
ticles largely follow a narrative structure and we therefore
need a domain sensitive temporal tagger that distinguishes
between the news and narrative domains [37]. For stemming
terms, we use the Snowball stemmer that is an implemen-
tation of the Porter stemming algorithm [31]. We set the
cut-off parameter for the distance between entities to c = 5,
since this value allows the use of 32 bit single precision float-
ing point numbers for storing the exponentially diminishing
edge weights without loss of precision, which helps in keep-
ing the graph size manageable. We use the hierarchical com-
pleteness condition for dates and the inclusion by splitting
for the names of persons and locations.

In the annotation phase, we find that there are about
4.6M English Wikipedia articles that contain at least one
annotation. The pages can be split into a total of 91.4M
sentences, 53.5M of which contain at least one annotation.
We find a total of 137.0M instances of entities, which are
divided into 27.0M of class date, 44.2M of class location,
44.4M of class person and 21.3M that are annotated as or-
ganizations. After the extraction of co-occurrences and the
aggregation of parallel edges, we obtain the LOAD graph,
for which we give the metrics in Table 1. We observe that
the number of distinct dates is by far the smallest due to
the selected granularities year, month, and day. However,
the coverage of dates in Wikipedia is above 50% for dates
after the middle of the 16th century and perfect for dates
after 1800 [36], meaning that each such date is mentioned at
least once. The large number of terms can be explained by
the presence of technical terms, mismatched names or loca-



class L O A D T S P
L 0
O 90.8 0
A 275.8 105.7 0
D 83.0 45.5 127.6 0
T 182.8 93.9 316.6 57.3 0
S 71.3 20.9 84.4 38.3 412.2 0
P 0 0 0 0 0 53.5 0

nodes 2.7 3.4 7.1 0.2 4.9 53.5 4.5

Table 1: Number of edges (top) and nodes (bottom)
of the LOAD graph constructed from the English
Wikipedia (in millions).
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Figure 2: Processing speeds of the three query types
with respect to the number of entities in the query.
Results were averaged over 1000 samples, error bars
denote the standard mean error.

tions and numeric data, which we did not model as separate
entities (although it is a possible extension of the model).

The annotation of the data required approximately 4 days
on a dual Intel Xeon E5-2650 CPU with 20 physical cores
and 256GB main memory. The LOAD graph construction
took 46 hours with a serial algorithm that is in theory triv-
ially parallelizable for future approaches. The resulting graph
has an uncompressed size of about 70GB on disk when edges
are stored in one direction or 110GB if they are duplicated
for faster initialization of the query interface. Despite these
expensive initial computations, the resulting graph allows
for near real-time information retrieval and browsing of rela-
tions as shown in Figure 2. Even for higher counts of entities
in a query, the processing takes less than a millisecond on
average (queries on multiple highly connected entities may
take up to a second), due to the representation of the sparse
graph in adjacency list format. Queries on page recommen-
dations (i.e., for entity linking) take slightly longer since the
connections between entities from all sentences on the page
must be considered. For sentence queries, the shown time
does not include the lookup of the actual sentences in the
external database. In summary, we find that the process-
ing time of information retrieval is insignificant given the
size of the document collection and is thus competitive with
search engine speeds, especially since queries are processed
only serially in the current implementation.

4.3 Experimental results
Based on the LOAD graph of Wikipedia, we include a

number of example applications. Due to the versatility of
the system with regard to the classes of entities that can
be used in a query, we only present a selection of possi-
ble application scenarios. However, we invite the reader

to download the graph alongside our query interface and
explore the data themselves or implement further ranking
scores (see Section 1 for a link). For the following examples
and the subsequent evaluation, we introduce the concept of
a subquery. Here, this means that input strings for entities
of classes location and actor in a query are split into their
components which are then included in the query as well.
The queries thus benefit from the completeness condition of
the graph as defined in Section 3. In the following, we use
the syntax 〈OC : (IC, value)∗〉 to describe queries, where
OC, IC ∈ {L,O,A,D, T, S, P} are the desired output class
and the classes of input entities, respectively, while value is
the name of the query entity.

Browsing. The most straightforward application of the
graph is the ability to browse the connections between ac-
tors, locations, dates, and organizations. In Table 2, we
show the top-ranked results of three queries centred on Ed-
ward Snowden. By including Snowden as the only query en-
tity, we obtain a list of organizations that are closely tied to
him, including the NSA and USIS, the company that vetted
Snowden. Duplicate entries for the different spellings of the
NSA are caused by the NER step, which suggests that the
LOAD approach can be used as a tool for disambiguation
or co-reference resolution. If we include Barack Obama as a
second query entity, the focus of the results shifts from se-
curity agencies to politics, where the incident was discussed.
Such browsing can thus be used as a tool in following con-
nections and co-occurrences of entities through the data to
explore events, much like a knowledge graph.

Summarization. Based on the relationships of entities
and terms in the graph, extracting descriptions for entities
is no different from asking for any other entity (see Table 2,
right). However, we can also query for sentences that contain
the relevant entities directly. For example, the resulting sen-
tences for the query 〈S : (A,Edward Snowden), (O,NSA)〉
is “In early 2013, thousands of thousands of classified docu-
ments were disclosed by NSA contractor Edward Snowden”,
which summarizes the relationship nicely. While the current
approach of locating sentences that contain the specified en-
tities is straightforward, more intricate summarization met-
rics can be adapted to the existing graph structure.

Entity and concept linking. Since we built the graph
on Wikipedia, we can also use it to recommend Wikipedia
pages for entities. The query 〈P : (A,Edward Snowden)〉
unsurprisingly yields Snowden’s Wikipedia page as the high-
est ranked result. However, we can link concepts as well, for
example with 〈P : (A,Edward Snowden), (T,Surveillance)〉.
For this query, the Wikipedia page for Global surveillance
disclosures since 2013 is placed ahead of Snowden’s page
in the ranking, since it lists the surveillance activities that
Snowden reported about in greater detail. In this context,
the concept of subqueries is helpful, since persons are rarely
referred to repeatedly by their full name on their own page.
For example, the query 〈P : (A,Albert Einstein)〉 ranks the
page for the Albert Einstein Transfer Vehicle highest, which
was used to supply the International Space Station. The
reason for this is that it is always referred to by the full
name, while Albert Einstein himself is more often referred
to as Einstein. Allowing subqueries fixes this and results in
the physicist’s page being top ranked. While the transport
vehicle never should have been tagged as a person during
NER, our findings indicate that the model is able to detect
such problems.



query: 〈O : (A,Edward Snowden)〉 〈O : (A,Edward Snowden), (A,Barack Obama)〉 〈T : (A,Edward Snowden)〉
rank organizations score organizations score terms score

1 nsa 1.000 nsa 0.546 surveil 1.000
2 national security agency 0.288 senate 0.503 leak 0.985
3 gchq 0.182 congress 0.340 document 0.610
4 us national security agency 0.083 republican 0.290 whistleblow 0.532
5 usis 0.043 democratic party 0.283 contractor 0.496

Table 2: Top 5 highest ranked results for three queries centred on Edward Snowden. Weights are given as the
normalized adapted tf-idf weights or their combination in queries with multiple entities. Terms are stemmed.

5. EVALUATION
In the following, we present two data sets of historic events

and use them to evaluate the LOAD graph of Wikipedia.

5.1 Evaluation data
Since we constructed the LOAD graph on Wikipedia data,

we cannot turn to the Wikipedia event pages that are fre-
quently used for evaluation in this context. To our knowl-
edge, there are no data sets that have already been an-
notated for entities and are suitable for an evaluation of
Wikipedia content, so we annotated it ourselves. To avoid
using Wikipedia data, we obtained a list of events from the
World History Project, which provides trivia about events
On This Day in History [20]. These websites contain lists
of historic events for each day of the year as well as dates of
birth and dates of death of more or less famous persons. The
site has information about 6558 dates of birth with a short
mention of the person’s job and 1483 dates of death along
with a sentence about that person’s accomplishments or cir-
cumstances of death. There are 5805 diverse historic events
from scientific discoveries to famous events. We describe the
preparation and annotation in the following.

Historic Events. As historic events we view the set of
dates that remain when dates of birth and dates of death are
removed. For these events, we also have a date of granularity
day and one sentence that describes the event. We randomly
chose 500 such events and annotated them by hand for per-
sons, locations, organizations, and remaining terms. An ex-
ample is shown in Table 3. It is evident that this data is very
diverse in both structure and content. Structurally, events
consist of differing numbers of entities of different classes
and have varying numbers of terms. Based on content, the
data can be categorized into various areas of life and ranges
from well known world events to minor descriptions, such as
the patent on a bicycle crank. We specifically chose this set
of random events instead of hand picked events to exclude
further bias and provide a more challenging evaluation data
set than the dates of death baseline.

Dates of death. The dates of death serve as a base-
line since they are likely represented by a single sentence
in Wikipedia. Since they end with the word died, we use
pattern matching to remove them from the historic events.
Afterwards, we manually annotate the data to strip titles
from names, split the description from the name and sepa-
rate multiple names and nicknames. For example, the sen-
tence “H(oward) P(hillips) Lovecraft, horror writer, died.”
yields the information that Lovecraft was a horror writer,
which we can use as terms to describe him, but it also pro-
vides the alias H.P. Lovecraft in addition to his full name.
We store this information together with the provided dates
for a total of 1483 persons.

data method found miss cor@1 prc@1
LOAD 869 613 122 0.082
LOADsq 1326 156 207 0.140

dates of death LOADTsq 1374 108 125 0.084
LOADTsq+ 1443 39 13 0.009

BASEw 869 613 206 0.140
BASEr 869 613 63.25 0.043
LOAD 290 210 39 0.078
LOADsq 341 159 40 0.080

historic events LOADTsq 414 86 33 0.066
BASEw 290 210 19 0.038
BASEr 290 210 0.48 0.001

Table 4: Evaluation results for both data sets.
Shown are the used methods and the two baselines,
the number of identified dates, the number of miss-
ing dates (not identified), the number of top ranked
dates that were in the evaluation data sets (cor@1),
and the resulting precision at rank 1 (prc@1).

5.2 Date prediction
To evaluate the performance of the LOAD model on Wiki-

pedia based on the two event data sets, we use the descrip-
tion of events as query input and evaluate the resulting rank-
ing of dates with respect to the known date. We chose this
approach since there exists exactly one date of granularity
day per event in the evaluation data set, and the coverage
of dates in Wikipedia is very good for the considered time
frame [36], which reduces the chance of evaluating the com-
pleteness of Wikipedia or the NER tool. For the ranking, we
only consider days since this is the granularity in the eval-
uation data sets. We test several possible methods based
on the LOAD approach. With LOAD, we denote the basic
method of inputting all query entities and ranking dates ac-
cording to the combined tf-idf ranking. For LOADsq, we al-
low subqueries. For LOADTsq, we use the descriptive terms
of events in the query in addition to the entities. LOADTsq+
is a special query in which we also include the terms death
and died. Additionally, we use two baseline approaches. For
BASEr, we rank dates that are connected to any query en-
tity at random (this is iterated 1000 times and averaged).
BASEw on the other hand ranks dates by their weighted
connection ω to any entity in the query.

In Table 4, we show the results for both evaluation sets.
Independent of the data set, we find that the LOAD meth-
ods are able to locate a higher number of correct dates and
include it at some position in their ranking. The number
rises as we include more entities and terms in the queries.
In the case of death dates, the LOAD approach outperforms
the randomized baseline but is strongly correlated with the
weighted baseline. Since we only have one class of query en-
tity in this case, this result is expected. Here, the LOADsq
approach with subqueries performs best with regard to the



date event type locs orgs actors terms
1918-07-08 Ernest Hemingway, Red Cross volunteer, wounded in Italy. war 1 1 1 2
1966-09-08 ”Star Trek” debuted (NBC). cul 0 1 0 3
1973-10-06 Israel attacked by Egypt and Syria. war 3 0 0 1
1866-11-20 Bicycle with a rotary crank patented (Pierre Lallemont). sci 0 0 1 4
1960-08-19 Francis Gary Powers, U2 spy plane pilot, convicted in a Moscow court. pol 1 0 1 6

Table 3: Examples of events from the evaluation data set that are annotated for actors, locations and
organizations together with the date on which the event took place. For each event, the number of entities
by class is listed. Note that these events are not necessarily represented by a single sentence in Wikipedia.
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Figure 3: Prediction of dates based on event data.
Shown is the number of identified correct dates in
the top k ranks versus the rank k.

number of correct dates that are ranked at top position. The
results are similar for the historical event data, although the
weighted baseline performs much poorer with the addition of
further query entities. Interestingly, the inclusion of terms
in the query helps with the overall recall but not with the
precision of the results. In order to evaluate the brows-
ing potential of the method when used as a kind of search
engine, we also consider the number of correctly identified
dates with progressing rank in the list, as shown in Figure 3.

Here, we find that LOADsq performs best for the date of
death data, for which it includes 50% of the correct dates
in the first 10 positions of the ranking. The performance
of LOADTsq is worse and even though it and LOADTsq+
ultimately include the most correct dates, this happens at a
point in the ranking where it is of little relevance, unless this
were to be used as a pre-selection step for a further analy-
sis. For either data set, the LOAD methods with subqueries
perform significantly better than either baseline. For the
historic event data, the inclusion of terms leads to a further
improvement over the other LOAD methods, which empha-
sizes the need for terms in the model that may be important
or even the only known features of an event.

6. CONCLUSION & ONGOING WORK
In this paper, we presented the graph-based LOAD model

for the representation of named entities, dates and terms in

the context of a document collection for the purpose of event
extraction, browsing and indexing. We demonstrated the
versatility of the system, pointed out further applications,
and evaluated the system on two data sets of historic events.

A point that is worth discussing is the dependence of
the LOAD model on the quality of the NER phase. While
StanfordNER is a state-of-the-art system, certain topics on
Wikipedia are simply too far removed from the training data
to achieve good performance. For example, a query for en-
tities related to the term Klingon yields results that will
be familiar to any fan of Star Trek. However, the classes
of such entities are assigned randomly, since Stanford is for
obvious reasons unable to handle fictional Klingon names.
This is unlikely to be an issue for smaller corpora of news
articles, but for diverse document collections, further con-
siderations are necessary. As such, we see a number of areas
where the model can be improved in practical applications.
Most prominent is the selection of terms, which can be re-
duced to a given set of parts-of-speech, based on the POS
tags that are assigned in the NER phase. Doing so would
allow for a more finely nuanced selection of terms. Differ-
ent parts of speech such as verbs could then also be used
to distinguish or describe certain kinds of events as compos-
ites of entities A second possibility is the inclusion of further
classes of named entities, such as StanfordNER’s money or
percent classes. With regard to the model itself, the distinc-
tion between different classes of entities in the edge creation
step (i.e., the multi-partiteness) is geared towards event ex-
traction. For different applications, however, relationships
between entities of the same class could be included. For ex-
ample, a measure of similarity between persons might help
to improve the quality of queries by accounting for synonyms
and co-references.

We conclude with the observation that we tested the ap-
proach on Wikipedia, primarily because it is an enormous
and free source of unstructured text that can be cleaned
to remove noise. However, the LOAD model itself is use-
ful for any document collection, since it makes no assump-
tions about document structure or origin. An application to
a streaming or online setting is possible, where the model
stands to benefit profoundly from the underlying graph rep-
resentation, which allows incremental updates of any kind.
The addition of new entire documents is possible in real-
time, simply by processing the document and adding the re-
sulting subgraph to the main graph structure. Even addition
to or deletions from individual sections of a document can
easily be accounted for, since the adjustment of edge weights
happens locally within the graph structure. Thus, the model
is able to handle the processing of frequently edited docu-
ment collections like Wikipedia or news feeds.

Ongoing work. We are currently working on combining
NER, temporal tagger, LOAD algorithm, query interface,



and word embedding for terms into a standalone version
that can be applied to any document collection to facili-
tate efficient event browsing. Given the quality issues in the
output of NER on Wikipedia, we are also working on the ex-
traction of named entities from Wikipedia based on internal
links, with the aim of constructing a more accurate version
of the Wikipedia LOAD graph as a community resource.
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