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ABSTRACT
The increasing number of news outlets and the frequency of the
news cycle have made it all but impossible to obtain the full picture
from online news. Consolidating news from different sources has
thus become a necessity in online news processing. Despite the
amount of research that has been devoted to different aspects of
new event detection and tracking in news streams, solid solutions
for such entangled streams of full news articles are still lacking.
Many existing works focus on streams of microblogs since the anal-
ysis of news articles raises the additional problem of summarizing
or extracting the relevant sections of articles. For the consolidation
of identified news snippets, schemes along numerous different di-
mensions have been proposed, including publication time, temporal
expressions, geo-spatial references, named entities, and topics. The
granularity of aggregated news snippets then includes such diverse
aspects as events, incidents, threads, or topics for various subdivi-
sions of news articles. To support this variety of granularity levels,
we propose a comprehensive network model for the representation
of multiple entangled streams of news documents. Unlike previous
methods, the model is geared towards entity-centric explorations
and enables the consolidation of news along all dimensions, includ-
ing the context of entity mentions. Since the model also serves as
a reverse index, it supports explorations along the dimensions of
sentences or documents for an encompassing view on news events.
We evaluate the performance of our model on a large collection
of entangled news streams from major news outlets of English
speaking countries and a ground truth that we generate from event
summaries in the Wikipedia Current Events portal.
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1 INTRODUCTION
Reading it in the paper in the morning is a common idiom for catch-
ing up with the news that is becoming increasingly less applicable.
Putting aside the obvious departure from printed news, both the
temporal aspect and the grammatical singular are less and less ac-
curate. News are not reported and consumed in the morning but in
a constant news cycle throughout the day, published by a multitude
of news outlets with varying degrees of reliability, political bias, and
overlapping content. It is these entangled streams of news that the
reader has to wade through to stay informed. Despite similarities
between the news cycle and streams of microblogs, social media
cannot take on the mantle of investigative journalism, which relies
on argumentative texts and is less focused on the instant than it is
on the evolution of stories. In this context, the so called Five Ws of
Who?,When?,Where?,What?, andWhy? are questions of central
importance that serve the journalist and the reader in uncovering
news. Naturally, these questions put an emphasis on entities as piv-
otal components of news. In information retrieval, this is reflected
in the definition of an event as something that happens at a given
place and time between a group of actors [2], originating in topic
detection and tracking and highlighting the central role of entities
for inducing structure in the unstructured texts of news articles.

In large entangled news streams, far more than one news article
tends to be required to retrieve the full picture [32]. However, a lot
of information is replicated between or even within individual news
streams and thus redundant. Intuitively, this motivates two major
subtasks in automated news analysis: identifying event mentions in
unstructured texts, and aggregating them across documents. These
tasks are referred to as new event detection and event tracking [3],
and can be augmented by detecting topics [7] that put individual
documents into context. To make identified events accessible to
users, a central step is thus their aggregation into threads of events
along some dimension(s). Many different approaches have been
proposed to this end. Some focus on a geographic aggregation and
visualization of news sources [33], while others focus on the tempo-
ral aggregation [12], or both [38]. Alternative approaches use the
participating entities directly [9, 16, 30]. In the case of a temporal
aggregation, different temporal dimensions can be considered, such
as the dates in the documents [21], or external information such as
the publishing date [4] and edit histories [15]. With regard to time-
lines, another important aspect is then the temporal order, as the
SemEval-2015 task for cross-document event ordering shows [20].
Beyond the above dimensions, more recent approaches include
aggregation on a topic level [1] or based on word embeddings [22].

When considered for contrastive explorations of content, the
above approaches suffer from two critical drawbacks: the limited
number of aggregation dimensions and the aggregation granularity
level. No existing approach covers the entirety of available dimen-
sions and it is indeed questionable whether an aggregation along
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all dimensions at once is realistically possible. Perhaps even more
critically, the results are always coarse structures due to an ag-
gregation either on the document, event, or topic level. However,
events are commonly defined as composite mentions of (named)
entities, which form the stitching points between individual news
streams. After all, we consume news about people, organizations,
or locations of interest and follow them over time and in different
contexts. Is it then not a more reasonable approach to retain this
entity-centric structure of news in a suitable document representa-
tion for subsequent analyses, and aggregate only where necessary
and in exactly the dimensions that fit the exploratory task?

As a first step towards addressing this shortcoming, we intro-
duce entity-centric implicit networks as a representation of entangled
news streams. Based on the concept of implicit entity networks
for static document collections [27, 30], we include entity relation
information, a spatial and two temporal dimensions (temporal ex-
pressions and publication metadata), and the context of mentions
in a comprehensive framework for entity-centric analyses. On the
technical side, our model addresses the inherent scaling issues of
entangled news streams by utilizing efficient entity-centric queries
to localized graph substructures, and the streaming graph updates
take advantage of incremental adjustments to relevance measures
for queries against the data [8, 36]. Furthermore, the implicit repre-
sentation serves as an (inverse) index for retrieval tasks without
requiring the storage of proprietary news article content. On the
application side, our model provides a more fine-grained and versa-
tile representation of entangled news streams than any previous
approach. Instead of utilizing document- or event-centric indexing,
we focus on the level of entities and contexts and use them as stitch-
ing points between individual news threads. The model supports a
wide range of tasks, including entity-centric topic and event extrac-
tion and tracking, contextual search, contrastive source comparison,
and exploratory visualizations of the underlying streams.

Contributions. Our contributions are fourfold. (i) We propose
a comprehensive model for entity-centric exploration and retrieval
tasks on large entangled news streams. (ii)We discuss graph-based
context-sensitive clustering of joint entity mentions in both static
and streaming applications. (iii) We introduce a clustering of en-
tities along naturally evolving topics that does not suffer from a
pre-defined number of topics or topic degradation at low ranks
like traditional topic models. (iv)We evaluate our model on a large
entangled stream of news from international outlets. We provide
the resulting network data, including links to the original articles1.

2 RELATEDWORK
To our knowledge, no previous work supports the comprehensive,
entity-centric exploration of entangled news streams. Thus, we
give an overview of works that cover some of these aspects.

Entity-centric Exploration and Analysis. A fundamental re-
sult in entity-centric document analysis with strong emphasis on
the detection of event descriptions is by Feng and Allan, who for-
malize the concepts of incident threading and event threading [11].
While event threading captures the internal structure of news topics
by adding causal or temporal relations, incident threading merges

1News graph, evaluation data, and code are available for download at our website:
https://dbs.ifi.uni-heidelberg.de/resources/newsstream/

mentions of identical entity cooccurrences. Later works utilize sim-
ilar concepts. Kanhabua et al. assess the importance of temporal
expressions based on the cooccurrences of entities and temporal
anchor texts within individual sentences [15]. Gupta et al. present
EventMiner, a framework for extracting events from collections of
documents [13] that is very comprehensive in its use of temporal
expressions and named entities, but does not scale. Mishra and
Berberich link coarse-grained events from news articles to corre-
sponding Wikipedia pages [21]. Similarly, Ceroni et al. use entity
mentions and temporal information to confirm the occurrence of
events in a document collection [9]. Although the above works
focus on entities, they only consider static document collections
and do not support entity-centric exploration or streaming news.

Analysis of Articles in News Streams. A number of frame-
works offer comprehensive analyses of streaming news. Lydia is a
large-scale aggregation tool for news articles [17] with numerous
subsequent publications. The European Media Monitor builds and
processes a repository of multilingual European news articles [5].
News Stand monitors and retrieves RSS feeds to extract geographic
content from articles for spatial clustering and visualization [33].
The enBlogue system allows the identification of emerging topics
from news streams in real time [4], but has so far been applied
with a focus on blogs and microblogs. A shortcoming of the above
approaches is the lacking support for entity-centric explorations.

Ahmed et al. combine topic modeling, clustering and named
entity recognition to distinguish topics, story lines, and entities in
streaming news articles [1], but do not include the effects of entity
cooccurrences. To support ad-hoc tracing of news streams, Vuurens
et al. utilize the clustering and qualification of titles and sentences
in news articles [35]. Moran et al. introduce the use of word em-
beddings to enhance first story detection in microblogs [22].

Many further approaches to streaming news analysis exist, but
few of them consider temporal information, and none of them
include temporal information along with entities, terms, and topics.

Network-based Document Models. Yang et al. classify news
documents into topics and measure topic novelty by using both
keywords and named entities with relativeweighting for event-level
novelty detection [37]. For a similar purpose, Das Sarma et al. build
entity dynamic relation graphs to identify entities participating in
trending events, but exclude locations [26]. More generally, Blanco
and Lioma explore a network-based approach that models terms as
nodes in a graph with edges weighted by cooccurrence counts [6].
Rousseau and Vazirgiannis use an unweighted but directed graph
to account for term order in a document’s text [25]. They focus
on the sentence level and do not include entities, thus limiting the
capability of the model for entity exploration.

All of these approaches use graphs to answer specific questions
about a document collection or stream. Here, we focus on a com-
prehensive network representation that supports a multitude of
subsequent analyses. A similar approach was recently presented
by Spitz and Gertz [27, 30], who construct an implicit network
of entity mentions from a static document collection to support
exploratory tasks. While their model could be adapted to support
efficient streaming updates, an exploration along the dimension of
publication dates or the context of entities is not included. In the
following, we thus describe how a more general implicit network
model can be realized in a streaming environment.

https://dbs.ifi.uni-heidelberg.de/resources/newsstream/


3 ENTITY NETWORK MODEL
Based on the intuition that entity relations can be derived from
joint entity mentions, we construct a network of entity relations
from the named entity classes locations, organizations, actors, and
dates. Together, these form the basis of the LOADmodel for implicit
networks [30], which we improve from a static to a streamingmodel
by adding (i) term embeddings to encode the context of entity men-
tions for refined queries, (ii) an adaptation to the news domain
by considering publication times as a second temporal dimension
beyond temporal expressions in the documents, and (iii) an adap-
tation to entangled news streams and concurrent events by using a
multigraph model with (partial) edge aggregation schemes.

3.1 Entity Multigraph Model
Let N be a collection of news articles. Each document n ∈ N con-
sists of sentences s ∈ n. We denote the set of all sentences in all
documents as S :=

⋃
n∈N {s ∈ n}. To consecutively number the

sentences, let σ : S → N map a sentence to its index in the docu-
ment in which it occurs. We then consider each sentence to be a
collection of words, which we partition into entity classes.

Graph Nodes. In the following, we consider words to be units
within a text that has been tagged for named entities.We distinguish
between the named entity classes locations L, organizationsO , actors
A, and dates D, according to the LOAD model. All remaining words
constitute the set of terms T , which is defined as

T :=
⋃
s ∈S
{w ∈ s | w < L ∪O ∪A ∪ D}, (1)

Thus, a sentence is a multiset of entities s ∈ (L∪O ∪A∪D∪T )∗. In
the following, we refer to the set of actors, locations, organizations,
dates and terms as entities. We define the union of the aforemen-
tioned seven classesV := L∪O ∪A∪D ∪T ∪S ∪N as the nodes of
the graph and employ a function η : V → {L,O,A,D,T , S,N } that
maps each node v ∈ V to the corresponding class η(v ).

Graph Edges. To obtain a graph representation G = (V ,E),
we construct a set of edges E := EC ∪ EP based on two criteria:
containment and proximity. Containment represents edges EC be-
tween entities and sets, such that an entity is connected to a set
that contains the entity. This type of edge provides provenance
and context information for entities. Proximity edges EP encode
the cooccurrence of entities within at least one common document
and represent implicit entity relations. Edges of the proximity type
introduce parallel edges in the graph since one edge is induced
whenever two entities cooccur. To distinguish between parallel
edges, we rely on instances I ⊆ N of entity cooccurrences, along
with an injective mapping ι : V × V → I . Here, i = ι (v,w ) ∈ I
represents an instance of the cooccurrence of two entities v andw
in some unique ordering, such that the tuple e = (v,w, i ) denotes
an edge between v andw . For example, if entities v andw cooccur
in a document, this induces an edge (v,w, i ). If they later cooccur
again, we obtain a new edge (v,w, j ). Note that a document may
contain multiple instances of the same entities. Formally, we obtain

EC := {(v,w, i ) | v ∈ w ∧ i = ι (v,w )} (2)
EP := {(v,w, i ) | ∃n ∈ N : v,w ∈ n ∧ i = ι (v,w )} (3)

Thus, containment edges occur between entities and sentences or
sentences and documents, while proximity edges connect entities.

Since there is a surjection from S to N , edges between entities and
documents can be reconstructed from edges between entities and
sentences. The resulting graph is undirected and we therefore do
not distinguish between edges (v,w, i ) and (w,v, i ) where this is
clear from context. We denote with N (v ) the neighbourhood of a
node v , i.e., all nodes that are connected to v by at least one edge.

3.2 Edge Weights and Edge Attributes
To assign weights and attributes, we distinguish between edges of
the containment type EC and edges of the proximity type EP .

Set Containment Edges. Edges of the containment type are
binary relations. Therefore, the resulting edges are essentially un-
weighted, although parallel edges may occur in rare cases. To
simplify the subsequent notation, we define a distance function
δ : EC → N for edges between an entity v and a sentence s as
δ (v, s, i ) := 0 if v ∈ s , and δ (v, s, i ) := ∞ if v < s . The distance
between sentences and documents is defined analogously.

Occurrence Proximity Edges. Edges of the proximity type are
more complex due to more finely nuanced distances and parallel
edges caused by multiple cooccurrences. Since it is this entity cooc-
currence information that encodes the relevant information for
later analyses, we want to preserve these multiple edges and enrich
them with additional information for later aggregation (see Sec-
tion 3.4). We consider three fundamental concepts, namely (1) the
publication time, (2) the textual distance between the mentions of
two entities, and (3) the context of the mentions.

Publication Time. We assume that a publication time or re-
trieval date is known for each news article. Let τ : N → N map
each document n ∈ N to its publication time τ (n). Let ni be the
document that contains an instance i inducing an edge e = (v,w, i )
between two entities. We then assign τ (e ) := τ (ni ) to edge e .

Textual Distance. By overloading the function σ , we can map
each entity of an instance to the index of the sentence in which this
entity occurs. Thus, let σ (v, i ) denote the number of the sentence
in which entity v occurs in instance i . For example, if entity v in
instance i occurs in the first sentence of a document, then we have
σ (v, i ) = 1. In analogy to the LOAD model, the textual sentence
distance δ : EP → N of two entities can then be written as

δ (v,w, i ) := |σ (v, i ) − σ (w, i ) | (4)

For example, if entities v andw cooccur in a document such that v
is contained in the first sentence andw is contained in the fourth
sentence, then δ (v,w, i ) = 3. Thus, if two entities occur in the same
sentence, their distance is 0. If v and w never occur in the same
document, we set δ (v,w ) := ∞. To include the distance of entity
cooccurrences in the graph, we assign to each edge e = (v,w, i ) the
corresponding distance δ (v,w, i ) as an edge attribute δ (e ).

Context Embeddings. To conserve the context of joint en-
tity mentions, we use a vector embedding of terms in the con-
text window of two entities. Formally, an embedding is a function
ε : T → Rk that maps a term to a point in a k-dimensional vector
space. To obtain the context of two entities in a cooccurrence in-
stance, we define a context window as a function of those entities.
Letω : EP → 2S , such thatω maps an instance to a set of sentences.
Specifically, let ni be the document containing an instance i , then

ω (v,w, i ) := {s ∈ S | s ∈ ni ∧ σ (v, i ) ≤ σ (s ) ≤ σ (w, i )} (5)



Figure 1: Schematic view of the model. Edges between en-
tities v and w are extracted with context κ, distance δ and
timestamp τ . If edges with a similar context between the
same entities re-occur, they may be aggregated.

where w.l.o.g. σ (v, i ) ≤ σ (w, i ). Thus, ω (v,w, i ) consists of the sen-
tences containing v andw , and all sentences inbetween. Based on
this, we define the context of an edge e = (v,w, i ) as the normal-
ized sum of all embeddings of the terms in the context window
ω (v,w, i ). Thus, let κ : EP → Rk denote the context function

κ (v,w, i ) :=
∑

s ∈ω (v,w,i )

∑
t ∈s

ε (t )

|ω (v,w, i ) |
(6)

where |ω (v,w, i ) | denotes the number of terms in the context win-
dow. The removal of stop words and the limitation to content words
is feasible in this step to reduce noise. For each edge e = (v,w, i ),
we store κ (e ) as an attribute to identify pairs of entities that appear
in similar contexts. For an overview of the model, see Figure 1.

3.3 Aggregated Graph Attributes
We now lay the foundations for the entity-centric exploration of
news in their context. A shortcoming of the LOAD model is the ag-
gregation of all parallel edges to obtain a simple graph. While such
an aggregation makes graph representations of large document
collections feasible, it does not distinguish between mentions in dif-
ferent contexts. In news analysis, however, the number of contexts
in which two entities cooccur is limited. Thus, aggregating edges
by context still results in a stark reduction of the number of edges,
while also preserving the context of entity cooccurrences for later
analyses. Here, we argue that such an approach should be flexible
enough to handle arbitrary numbers of contexts. Furthermore, an
aggregation by context partially preserves the multiplicity of edges,
while simultaneously collapsing unjustifiably duplicate edges to
enable a more focused extraction of information from the resulting
graph. In particular for entangled streams of news articles with
redundant information, such an approach is clearly beneficial.

To obtain an aggregated graph GA = (V ,A), we require a new
set of aggregated edges A with aggregated attributes. Let v andw
denote two entities and let Ia denote a set of instances that induce
parallel edges Ea := {(v,w, i ) ∈ E | i ∈ Ia } between them. In the
following, we discuss how to derive the aggregated edge features.

Aggregated Edge Importance. This weight derives an overall
strength of the relation between two entities from the sentence dis-
tances of individual edges. Here, the dissimilarity of a sentence dis-
tance is transformed into a similarity by a decaying exponentiation.
The individual similarities are then added over all aggregated edges.

Table 1: Overview of edge attributes in the graphs.

τ publication time ω context window
δ textual sentence distance κ context embedding
σ sentence index λ # aggregated edges
ι instance of cooccurrence η node type
ε term embedding χ edge importance

Thus, we compute a weight for the aggregated edge a = (v,w, j ) as

χ (a) :=
∑
e ∈Ea

exp(−δ (e )) (7)

Aggregated Publication Dates. For a temporal analysis, we
store the set of all publication dates, which we assume to be distinct
as long as the granularity of time is fine enough. For lower granu-
larities, this attribute is effectively a multiset of dates. Formally,

T (a) :=
⋃
e ∈Ea

{τ (e )} (8)

Aggregated Context. The context is the primary component
of the edge aggregation (see Section 3.4). However, once edges are
aggregated, a single context vector is sufficient to represent an edge
and facilitate context-sensitive queries. Therefore, the contexts of
individual edges can be aggregated as the mean of the context vec-
tors. Since the context of two entities whose mentions are separated
by a couple of sentences is likely less important than two mentions
within the same sentence, we normalize individual contributions
by the distance of the mentions δ . Thus,

κ (a) :=
1
|Ea |

∑
e ∈Ea

κ (e )

δ (e ) + 1
(9)

Number of Aggregated Edges. To maintain the context cen-
troid in the streaming aggregation model, we store for each edge
the number of individual edges that were aggregated. Thus, we
define an attribute function λ : A→ N with λ(a) := |Ea |.

Based on these four attributes, parallel edges in G = (V ,E) can
be combined to create the aggregated graph GA = (V ,A) as we
describe in the following. For containment edges, only the impor-
tance and the number of aggregated edges are meaningful. For the
importance of containment edges, note that the exponentiation
turns the distances into a value of 1 for existing edges and 0 for
missing edges. An overview of edge attributes is shown in Table 1.

3.4 Edge Aggregation Schemes
For edge aggregation, two settings are possible. If real-time que-
ries on streaming data are of interest, a streaming aggregation can
be used to process news articles as they come in, and merge new
edges to existing ones. Conceptually, this resembles streaming first
story detection for microblogs [23] but retains the entire contextual
information. Extracted edges are treated as information fragments
that can be merged with existing edges (if the context is sufficiently
similar) or treated as new edges (if the context is sufficiently dif-
ferent). We refer to this as the streaming approach. Alternatively,
all edges of all articles can be stored to retain the unaggregated
information. In this case, the edges are aggregated locally between
pairs of nodes at query time. We refer to this as the static approach.

StreamingEdgeAggregation. Streaming aggregation supports
a real-time analysis of news articles as they become available and



Algorithm 1 Addition of edges in the streaming approach.

Input: GA, document graph Gn = (Vn ,En ), threshold t
1: VA ← VA ∪Vn
2: for e = (v,w, i ) ∈ En do ▷ for all new edges
3: Ea ← {(v

′,w ′, i ) ∈ E | v = v ′ ∧w = w ′}
4: if Ea = ∅ then ▷ if this is the first edge betw. v and w
5: a ← (v,w, i ) ▷ create new aggregated edge
6: λ(a) ← 1 ▷ set multiplicity to 1
7: A← A ∪ {a} ▷ insert as a new edge
8: else ▷ otherwise, find candidates for merging
9: a ← argmaxa′∈Ea {sim(e,a′)} ▷ find most similar edge
10: if sim(e,a) ≤ t then ▷ if similarity below threshold
11: λ(a) ← 1 ▷ set multiplicity to 1
12: A← A ∪ {a} ▷ insert as a new edge
13: else
14: χ (a) ← χ (a) + χ (e ) ▷ update importance
15: T (a) ← T (a) ∪ {τ (e )} ▷ merge date sets
16: κ (a) ← 1

λ (a)+1 (κ (a)λ(a) + κ (e )) ▷ update context
17: λ(a) ← λ(a) + 1 ▷ increase multiplicity
Output: GA

Algorithm 2 Aggregation of edges in the static approach.

Input: Multigraph G = (V ,E), clustering algorithm
1: Initialize A← ∅ and l ← 0
2: for (v,w ) ∈ V ×V ,v < w do ▷ for all pairs of nodes
3: E ′ ← {(v ′,w ′, i ) ∈ E | v = v ′ ∧w = w ′} ▷ select edges
4: C ← cluster(E ′) ▷ cluster edges by context similarity
5: for Ea ∈ C do ▷ for each cluster of edges
6: l ← l + 1 ▷ increase edge index
7: a ← (v,w, l ) ▷ create new aggregated edge
8: λ(a) ← |Ea | ▷ set multiplicity
9: χ (a) ←

∑
e ∈Ea exp(−δ (e )) ▷ aggregate importance

10: κ (a) ← 1
|Ea |

∑
e ∈Ea

κ (e )
δ (e ) ▷ combine contexts

11: T (a) ←
⋃
e ∈Ea {τ (e )} ▷ merge date sets

12: A← A ∪ {a} ▷ insert as a new edge
Output: Aggregated graph GA = (V ,A)

utilizes a similarity threshold parameter t . As new articles n are
added to the collection, multigraph representations Gn = (Vn ,En )
are constructed. Each edge in Gn is inserted into the collection
graphGA by aggregating it with existing edges based on context
similarity. Here, any suitable vector similarity measure can be used
to compare the embeddings. We distinguish between three cases
for a new edge e = (v,w, i ) ∈ En . (1) If e is a containment edge,
it is added to the set of aggregated edges A. (2) If v andw are dis-
connected in GA, then e is added to A. (3) Otherwise, if GA already
contains edges betweenv andw , we check if e is sufficiently similar
to the centroid context vector of an existing edge and aggregate
it with the existing edge a ∈ A that is the best fit and update the
edge attributes accordingly. If no existing edge is similar enough, e
is inserted into A. For a detailed description, see Algorithm 1.

Static Edge Aggregation. The static aggregation of edges is a
post-hoc processing of the collected news stream, in which parallel
edges are clustered. Here, a clustering approach without a fixed

number of clusters is required, as the optimal number of aggregated
edges per pair of nodes is unknown and highly varying for differ-
ent pairs of nodes. Additionally, outliers and noise should be kept
separate from the clusters since many news articles do not belong
to major news stories. After clustering, edges within each cluster
are aggregated into a single edge. See also Algorithm 2.

Complexity. The complexity of the streaming approach is in
O (I ·⟨p⟩), where ⟨p⟩ is the average multiplicity of parallel aggregated
edges between node pairs. The number of instances I scales linearly
with the number of articles N for a given cooccurrence window
size, and ⟨p⟩ is small enough to support similar edge detection by
linear scans, as we show in Section 5.4. The complexity of the static
approach is higher with O (I ·C ), where C is the complexity of the
selected clustering algorithm, which is likely at least quadratic in
the edge multiplicity of unaggregated edges. However, due to the
localized clustering, the approach is parallelizable by node pairs.

Stability. Both approaches produce deterministic results, al-
though this depends on the temporal order of articles in the stream-
ing approach. Obviously, the aggregated graphs differ between the
two approaches. In Section 5, we compare their efficacy. In practice,
the static approach can be applied in a streaming setting if sufficient
memory is available to cluster edges locally at query time.

4 NETWORK CREATION AND EXPLORATION
Based on the above model, we consider application scenarios in
which such a representation supports the exploration of news, and
show exploratory results on a large stream of news articles.

Exploration Focus. Using an implicit network representation,
any task that can be formulated as entity or term rankings or the
extraction of weighted entity graph patterns is viable. In particular,
events as dyadic or triadic structures of entities can be queried
efficiently [27]. Due to the transitivity of edge aggregation (edges
can always be aggregated further), all entity-centric exploration
methods designed for LOAD also work on our context-enriched
model. We thus focus specifically on novel exploration methods
that utilize temporal data and the context of entity mentions to
extract evolving entity-centric topics from entangled news streams.

4.1 News Document Data
In the following, we describe the acquisition and preparation of the
news data as well as the construction of the graph representation.

DataCollection. Since we require entangled news streams from
multiple outlets, standard corpora such as the New York Times
corpus cannot be used. Instead, we collect articles from the RSS
feeds of international outlets with a focus on quality news. For
content extraction, we use manually created rules since these allow
a clean extraction of article contents (including multi-page articles)
at a level that automatic boilerplate removal does not support [29].

Specifically, we use articles from 14 English speaking news out-
lets located in the U.S. (CNN, LA Times, NY Times, USA Today, CBS
News, The Washington Post, IBTimes), Great Britain (BBC, The
Independent, Reuters, SkyNews, The Telegraph, The Guardian), and
Australia (Sidney Morning Herald). The RSS feeds of these outlets
differ, but we focus on feeds related to political news. The time
frame for our data collection is June 1 to November 30, 2016. We
remove articles that have less than 200 or over 20, 000 characters
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Figure 2: Evolution of contextual topics (i.e., edge contexts) for selected entity pairs with streaming aggregation (t = 0.65).
Shown is the relative aggregated frequency of publication dates. Contexts are derived from the k = 5 terms in the neigh-
bourhood of both entities whose context is most similar to the edge context. Q identifiers denote Wikidata IDs. Left: relation
between Brazil and the International Olympic Committee. Right: relation between David Cameron and the United Kingdom.

(due to NER limitations) or more than 100 disambiguated entities
per article (i.e., lists). The final collection contains 127, 485 articles
over a period of six months, with a total of 5.4M sentences.

Data Preparation.Data preparation consists of five steps: recog-
nition of named entities, entity linking, entity classification, part-
of-speech and sentence tagging, and temporal tagging. For the
recognition and disambiguation of named entities to Wikidata IDs,
we use the Ambiverse API2. To classify named entities into actors,
locations, and organizations, it is possible to use Wikidata hierar-
chies directly, but this can be problematic due to their constantly
evolving structure [28]. Therefore, we map Wikidata IDs to YAGO3
entities [18] and classify them according to the YAGO hierarchy.
For actors, we use the class wordnet_person_100007846, and for
organizations wordnet_social_group_107950920. For locations,
no comprehensive WordNet class exists, so we use yagoGeoEntity,
which was designed for this purpose [14]. For the extraction and
normalization of temporal expressions we run HeidelTime in the
news domain setting [31]. Finally, for sentence splitting and part-
of-speech tagging, we use the Stanford POS tagger [34].

Network Construction. We proceed as described in Section 3.
Terms are stemmed with the Porter stemming algorithm [24], and
we impose a minimum word length of 4 characters for terms. The
window size for entity cooccurrence extraction is set to 5. As con-
text embeddings, we use Google’s pre-trained 300-dimensional
word2vec [19] word embeddings. The resulting networks has 5.7K
dates, 27.7K locations, 72.0K actors, 19.6K organizations, and 351K
terms, which are connected by 83.4M edges (before aggregation).

4.2 Contextual Topic Evolution
To highlight an exploratory application, we demonstrate the extrac-
tion of contextual topics. We extract topics that best describe the
individual contexts in which two entities are mentioned together
and consider their evolution over time. Naturally, multiple such
contexts may exist, which is reflected by the multiple parallel edges.

Contextual Topics. Recall that a context vector κ (a) is associ-
ated with each aggregated edge a = (v,w ). We define a contextual
topic of edge a as a weighted list of terms that describe the context
in which entities v andw occur in instances included in a. To ex-
tract the contextual topics for all aggregated edges between these
entities, we retrieve all terms Tx = N (v ) ∩N (w ) ∩T in the joint

2https://www.ambiverse.com/

neighbourhood of the two nodes along with all edges that connect
them to v orw . We aggregate these edges such that each term x is
connected to both v andw by exactly one edge, which we denote
with av and aw . Based on these triangular structures, we obtain a
ranking score for each term x ∈ Tx in relation to edge a as

rt (x |a = (v,w )) := min{sim(κ (a),κ (av )), sim(κ (a),κ (aw ))} (10)

Intuitively, we are ranking terms by how closely the context in
which they occur with an entity matches the context in which the
entities occur together. We create such a ranking of terms for all
aggregated edges between v andw . For each such edge, we select
the k top-ranked terms to describe the topic. Thus, we obtain a
natural language description for each of the edges between the two
entities. Since edges are aggregated based on context similarity, the
assumption is that the terms then describe the context of an edge
and that each edge in turn represents a topic.

Results. To demonstrate the expressiveness of contextual topics,
we show a timeline visualization of topics for pairs of entities. To
extract these, we use a cosine similarity of the context vectors and
rank the terms as described above. Then, we assign to each edge
between the two entities the k = 5 top-ranked terms as descriptors.
We select the three top edges by multiplicity (i.e., the aggregated
edges with the highest λ values). Since each such edge is associated
with a set of publication times, we can plot the evolution of the
topics over time. The results for two entity pairs are shown in
Figure 2. On the left, we see the evolution of topics for Brazil and
the IOC (i.e., the Olympic Games). One can easily identify contexts
as dealing with corruption, sports, and the awarding of medals.
Specifically, the award topic spikes precisely at the date of the
games. The second example shows the relation of David Cameron
to the United Kingdom during the Brexit crisis. While all three
topics are related to this issue, the referendum topic spikes at the
proper date and the shift between the remaining topics towards
Cameron’s resignation only after the referendum is pronounced.

In summary, the intuitive notion of aggregated edges as con-
texts corresponds well with our observations. Thus, term-based
topic descriptors assign meaning to such edges, and their extraction
serves to facilitate exploratory analyses of the news stream. Since
the extraction utilizes only a localized substructure of the network
around the focus entities, the process is efficient and allows a near
real-time exploration of the entire entangled news stream. Alterna-
tively, a subset of news outlets and focus entities can be selected



by the user for a contrastive analysis between outlets, or context
terms can be employed as additional input to quantify how a given
news outlet reports about a specific group of entities.

5 EVALUATION
To demonstrate the validity of our model beyond exploration, we
evaluate the streaming and static approach on a set of news events.

5.1 Event Completion Task
We evaluate against LOAD as the only comparable implicit network
model. The event completion task can be defined as follows: Given
k−1 out ofk entities participating in an event, predict the remaining
entity based on the data. We briefly describe the scheme used by
LOAD for this task, before we present our improved version that
includes the context. Both schemes rank entities x in the target set
X ∈ {L,O,A,D} based on a set of query entitiesQ ⊆ L∪O ∪A∪D.

LOAD Ranking (Baseline). This scheme applies a tf-idf -like
scoring to the edges of the graph to rank entities x ∈ X based on a
query entity q by computing a normalized importance score rL as

rL (x |q) :=
(
log

|Q |

|N (x ) ∩Q |

) ∑
e=(x,q, ·)∈E

exp(−δ (e )) (11)

Note that this scheme aggregates all parallel edges into a single
edge, which is weighted by the sum of individual edge importances.
Thus, the context is lost in this step. To generate a ranking based
on multiple input entities, LOAD sums over the contributions of
individual query entities. As an added feature, it includes the notion
of coherence, requiring that each target entity is linked to at least
min{coh, |Q |} query entities, with coh = 2 as a suggested value [30].

Context-based Ranking. In the context-sensitive model, two
entities may be connected by more than one edge, which we use
to differentiate between target candidates. Let Ea (x ) denote this
set of aggregated edges between a query entity q and an entity x
in the target set. Furthermore, where available, we can include the
context of the event description in the query to match the context
of candidate entities. Let κ (q) denote the context of query entities
in the event, which we include in the improved ranking

rC (x |q) := max
a∈Ea (x )

[
sim(κ (a),κ (q))

(
log

|Q |

|N (x ) ∩Q |

)
χ (a)

]
(12)

Intuitively, we normalize the importance of a candidate with the
similarity sim to the query context, before using the best contri-
bution as a ranking score. While any suitable vector similarity
function can be used, we use the cosine similarity in the following
since it works well for vector embeddings. To obtain a ranking by
multiple query entities, we improve the notion of coherence and
rank candidates first by the number of neighbours in the query set
|N (x ) ∩Q |, and break ties by the sum of ranking scores rC .

5.2 Evaluation Setup
Static Clustering.We require a clustering algorithm without fixed
clusters since it is impossible to divine a reasonable number of
clusters that applies equally to all pairs of nodes. Thus, we se-
lect DBSCAN [10] with cosine as a distance measure. To obtain
the necessary parameters ϵ andminPts , we conduct a number of
preparatory tests and find that the result quality suffers for high

Table 2: Evaluation results of the streaming edge aggrega-
tion. Shown is the precision@1 for the complete context em-
bedding as well as a context derived only from verbs.

aggregation threshold
t = 0.3 t = 0.4 t = 0.5 t = 0.6

complete 0.218 0.218 0.232 0.253
verb 0.225 0.222 0.215 0.208
LOAD 0.157

Table 3: Performance comparison of the static and stream-
ing (t = 0.6) edge aggregation approaches on a subset of the
evaluation data.We show the correct predictions at rank one
(cor@1), precision@1, and recall.

LOAD stream aggr. static clustering
complete verb ϵ = 0.2 ϵ = 0.3 ϵ = 0.4

cor@1 44 71 61 35 27 25
prc@1 0.165 0.266 0.228 0.131 0.101 0.094
recall 0.655 0.955 0.955 0.955 0.955 0.955

values ofminPts , whileminPts = 5 works well. Since a value of
minPts > |Ea | would be meaningless for edge aggregation, we use
the scheme minPts = min{5, |Ea |5 }, which performs best in our
experiments. We then employ the min-points heuristic to obtain a
reasonable value of ϵ = 0.3 as a starting point for the evaluation.

Context Extraction Schemes. To derive contexts for entity
cooccurrences, we consider two schemes according to the definition
in Section 3.2. For the complete context, we use theweighted average
embedding of all non-stopwords inside the context window. Based
on the importance of verbs for traditional event extraction, we also
consider the verb context, for which we utilize only the embeddings
of verbs inside the context window (we exclude all forms of the
auxiliary verbs be and have). Both schemes are applied separately
during network and ground truth construction.

Ground Truth Data. To extract ground truth events, we use
the Wikipedia Current Events portal3, which contains manually
maintained summarizations of news events. We crawl the pages
for the months of June 2016 to November 2016 to extract each item
as a news event. For NER and disambiguation, we use Wikipedia
links in the text. Since the Wikipedia summaries contain references
to news article sources, we match the references to articles in our
input stream. We exclude all events that consist of less than two
entities or have no reference to an article in our network. We obtain
97 individual events that correspond to at least one article in our
collection. For each such event, we generate a query from each
contained entity by using the remaining entities as query input and
the removed entity as ground truth (i.e., an event with k entities
induces k (k − 1) queries). We manually annotate the verbs in these
event summaries. In total, we obtain 293 queries for the evaluation.

5.3 Evaluation Results
Each evaluation query has exactly one correct answer. Therefore,
suitable evaluation metrics are precision@1, i.e., the fraction of
queries in which the top ranked prediction is correct, and recall@k,
i.e., the number of correct predictions among the top k predictions.
3https://en.wikipedia.org/wiki/Portal:Current_events



Streaming Aggregation.We first compare the two approaches
for context generation over varying aggregation thresholds and
show the resulting precision in Table 2. Threshold values of t < 0.3
are omitted since no further changes occur. Both methods outper-
form the LOAD baseline by a large margin (up to 61% improvement).
The verb context aggregation shows a slight decline in performance
with increasing threshold. The precision of the complete context
increases with the threshold value and it performs better overall. In
Figure 3 (top), we show the corresponding recall values of the com-
plete context approach. Varying thresholds show little influence on
recall, which makes low thresholds attractive in settings where a
compact representation is important and recall@5 is sufficient.

Static Aggregation. In Table 3, we show the performance of
the static aggregation for a subset of 267 evaluation queries (the
remaining 26 clusterings did not finish within 48 hours). Due to
this smaller evaluation set, the values for the static aggregation
vary slightly. For some of the ϵ settings, the clustering performs
better than the LOAD baseline, but not by a large margin, and
higher values of ϵ decrease the performance. The recall values
shown in Figure 3 support this observation.While static aggregation
outperforms LOAD, it does not rival the streaming aggregation.

In summary, we find that streaming edge aggregation is superior
to static aggregation in this setting. While other clustering algo-
rithms may perform better, our tests were extensive and the ease
of use for the streaming method is much higher. While the optimal
parameter settings for clustering approaches are usually difficult
to obtain, in the streaming approach there is a direct correlation
between the threshold and the prediction quality. What remains
is the issue of performance depending on the threshold selection,
which we discuss in the following.

5.4 Edge Deflation in Streaming Aggregation
The streaming model is designed to reduce the number of aggre-
gated edges that are stored in the graph to a manageable size and
avoid redundancy. Especially for entangled news streams, many
parallel edges with highly similar context are to be expected. In
Figure 4, we show the number of aggregated edges as a function
of the number of unaggregated edges for different threshold val-
ues applied to the complete context embeddings. We find that for
thresholds t ≤ 0.3, aggregation is almost complete and there are
never more than three parallel edges. For higher thresholds, this
number increases but is still easily manageable. Since higher thresh-
olds are favorable with regard to the extraction of information from
the graph, the threshold thus has to be tuned to the data throughput
in an application scenario. For the real-time processing of streams
of news articles, this is unproblematic due to the relatively low
volume of documents in the news domain. For higher frequency
streams such as the entire blogosphere, more sophisticated data
structures or similarity approximations may be desirable.

6 CONCLUSION & ONGOINGWORK
In this paper, we discussed the problem of entity-centric explo-
rations of large entangled streams of news articles. Based on the
intuition that entity mentions can serve as stitching points between
potentially biased news streams and as focal points of news re-
trieval tasks, we introduced contextual implicit entity networks as
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Figure 3: Recall of the edge aggregation methods for the
event completion task. Top: values for different thresholds
of the streaming aggregation approach with the complete
context. Bottom: Comparison of the recall of the static ag-
gregation DBSCAN clustering forminPts = 5 and varying ϵ .
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a comprehensive and versatile tool for the representation of such en-
tangled news streams. The model can be constructed faster than the
publication speed of news articles by several orders of magnitude
and thus efficiently facilitates a multitude of subsequent entity-
centric information retrieval tasks from the underlying streams
in near real-time, such as topic and event extraction and tracking,
contextual search, descriptive sentence extraction, or document
retrieval. Furthermore, it supports the interactive contrastive explo-
ration and contextual aggregation of news published by multiple
news outlets as well as their change over time. We evaluated the
model’s performance for different parameter settings on a large
collection of news streams, and found that the streaming aggre-
gation approach outperforms existing alternatives for the task of
entity-centric event completion. Finally, we discussed an applica-
tion of the model to the extraction of contextual and entity-centric
topic detection and tracking as one example of news exploration in
entangled news streams. Our implementation of the model along
with all used data is available for further studies.

Ongoing Work. We are currently researching the extraction
of evolving document topics from entity-centric topics, in a step
towards the comparison of contents between news streams. Further-
more, we are working on a generalization of the model to settings
with more versatile requirements for (named) entity annotations.
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