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ABSTRACT
Networks play an increasingly important role in modelling real-
world systems due to their utility in representing complex connec-
tions. For predictive analyses, the engineering of node features in
such networks is of fundamental importance to machine learning
applications, where the lack of external information often intro-
duces the need for features that are based purely on network topol-
ogy. Existing feature extraction approaches have so far focused
primarily on networks with just one type of node and thereby disre-
garded the information contained in the topology of heterogeneous
networks, or used domain specific approaches that incorporate
node labels based on external knowledge. Here, we generalize the
notion of heterogeneity and present an approach for the efficient
extraction and representation of heterogeneous subgraph features.
We evaluate their performance for rank- and label-prediction tasks
and explore the implications of feature importance for prominent
subgraphs. Our experiments reveal that heterogeneous subgraph
features reach the predictive power of manually engineered fea-
tures that incorporate domain knowledge. Furthermore, we find
that heterogeneous subgraph features outperform state-of-the-art
neural node embeddings in both tasks and across all data sets.
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1 INTRODUCTION
The observation that everything is connected to everything else,
which is frequently (mis-) attributed to Renaissance researcher
Leonardo da Vinci, describes the recent advances in information
retrieval and modelling increasingly well. At their core, networks
of entities offer a simple and intuitive representation of complex
connected systems by abstracting them to the nodes and edges
of a graph. Despite this apparent simplicity, even the most basic
forms of such network structures pose rich analytical challenges.
However, using a complete abstraction that reduces real networks
to just a single type of connected nodes often constitutes a rather
arbitrary approach that oversimplifies the represented system. As a
result, more diverse networks have shifted into the focus of research,
which are frequently referred to as heterogeneous (information) net-
works due to their composition of different types of nodes or edges.
Examples include a variety of data from naturally observed biologi-
cal networks to constructed entity networks and knowledge bases.
Recently, such networks have been applied in tasks as diverse as
music and movie recommendation [11, 47], multiplex film citation
analysis [35], the identification of a molecular basis for human dis-
ease [40], the embedding of language networks [38], or the extrac-
tion of events from implicit textual networks of named entities [34],
to name but a few. Frameworks have been designed for the extrac-
tion, cleaning and analysis of such data [25] and efforts have been
undertaken to make their heterogeneous structure more intuitively
understandable [43]. The terminology is fairly ambiguous in the
literature, where heterogeneous may refer to node-heterogeneous
networks (also called multi-mode), edge-heterogeneous networks
(also called multiplex or multi-layer), or both. Here, we refer to
networks with different types of nodes as heterogeneous networks.

Data Mining in heterogeneous information networks strives to
leverage the inherently diverse representation of information to de-
rive insights into the underlying systems [36]. Most of the time, the
knowledge of node types is used explicitly, for example, to recom-
mend movies based on user and actor connections that contribute
in very different ways to the overall result [47]. Similar examples
include Wikipedia query intent analyses [29], social network anal-
ysis [16] and transductive classification [4]. Most prominently, the
availability of large scientific publication networks such as the
DBLP data or the Microsoft Academic Graph has recently moti-
vated numerous investigations into the extraction of information
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from heterogeneous citation networks. In these investigations, the
distinction between node types has proven to be highly successful,
as the examples of the 2016 KDD Cup and the 2016WSDMCup [39]
show, in which many of the top-placed contenders leveraged en-
tity type information to great success in their assessment of the
scholarly importance of articles and institutions [9, 14].

To support predictive analyses on this data, the extraction and en-
gineering of representative node features from the network is para-
mount. Such features can be divided into two categories, namely
(1) intrinsic features that require domain knowledge in the engineer-
ing phase and (2) graph features that are based on the topological
structure of the network. Since feature engineering is costly and
domain knowledge can be difficult to obtain, some emphasis has
therefore been put on approaches for extracting node features or
node embeddings to characterize entities in the graph based on
their connectivity information, such as the embedding of the local
neighbourhoods of nodes [10, 13, 27]. Frequently, these approaches
employ controlled random walks around the node, which can be
problematic due to the heavily skewed distribution of nodes with
small and large degrees in real-world networks [38]. Despite the
growing prevalence of heterogeneous networks, many existing
general-purpose approaches to the extraction of node features from
such networks do not include the notion of node labels as a distinct
dimension. While these approaches leverage the topological neigh-
bourhood of nodes and some even include (partial) node labels, so
far no approach has abstracted the extraction of labelled features to
a purely topological level with no domain knowledge of node labels.
Furthermore, since (neural) node embeddings include a dimension
reduction, they result in inherently abstract representations that
offer no insights into the structurally important aspects of the data
and do not reflect them in the embedded features.

Here, we propose heterogeneous subgraph features that are based
on both topological information and node labels. They are designed
for settings in which domain specific features cannot be engineered
for heterogeneous networks. Unlike node embeddings, they offer
insights into the structure of the data itself. We discuss an imple-
mentation of the underlying subgraph census algorithm that avoids
the problems caused by the skewed degree distributions common to
most networks, since the counts of local subgraphs that surround a
node reflect both abundance and sparsity of connectivity.

Contributions. The contributions of this paper are fourfold.
(i) We introduce the concept of subgraph features for nodes in
heterogeneous networks. This novel type of feature copes well with
the skewed topology of real-world networks and can be used as an
equivalent replacement of features that are engineered with domain
knowledge when no such knowledge is available. (ii)We discuss the
interpretability of this new feature and its encoding in contrast to
neural embeddings, which serve only as abstract features. (iii) We
provide an efficient implementation of the feature extraction and
encoding framework that scales linearly with the number of nodes,
and is trivially parallelizable1. (iv)We demonstrate the effectiveness
of the new features against both classic features and neural node
embedding techniques. We use a selection of machine learning
techniques in two predictive tasks on three structurally diverse
networks for an empirical evaluation.

1C++ and Python code are available at https://dbs.ifi.uni-heidelberg.de/resources/hsgf/

Structure of the paper. In Section 2, we discuss related ap-
proaches and supporting work. We present the encoding scheme
and algorithm for enumerating subgraph features in heterogeneous
networks in Section 3. In Section 4, we evaluate the performance of
heterogeneous subgraph features for rank prediction tasks, discuss
the most discriminative types of subgraphs, and present a perfor-
mance comparison of subgraph features to state-of-the-art node
embeddings for the task of label prediction. We give a summary
and outlook in Section 5.

2 RELATEDWORK
Our approach touches on several concepts in the fields of Data
Mining and network analysis as we discuss in the following.

Prediction in InformationNetworks. The extraction and pre-
diction of information from (heterogeneous) information networks
is comprised of many different methods. Here, we only present
those that are most closely related. For an overview, we refer to
literature on mining heterogeneous information networks [36].

Guo and Liu consider the task of feature generation for music
recommendation in heterogeneous graphs in a collaborative filter-
ing setting based on random walks in the graph [11]. In a similar
approach, aimed at the task of personalized entity recommenda-
tion, Yu et al. employ heterogeneous relationship information in
networks by extracting path-based latent features to represent the
connectivity between users and items [47]. Bangcharoensap et al.
propose an approach for the transductive prediction of node labels
in heterogeneous information network data based on the notion
of edge betweenness, and show applications in node labeling tasks
for homogeneous networks [4]. The latent space heterogeneous
model presented by Jacob et al. also addresses transductive clas-
sification in social networks by transforming the heterogeneous
classification problem into multiple homogeneous problems [16].
Ren et al. use graphs of user queries, web pages and Wikipedia
concepts for learning user intent [29]. A couple of works also em-
ploy readily available scientific publication network data sets. For
example, Dong et al. predict the impact of scientific papers based on
a network containing six different factors, among them authorship,
venue, and citations [5]. Ren et al. derive citation recommendations
from clustering heterogeneous information networks of scientific
publications [28]. In an extension of link prediction on homoge-
neous networks, Sun et al. use heterogeneous scientific publication
networks for collaboration prediction between authors in DBLP
data by including a temporal aspect in the prediction [37]. Huang
et al. propose meta-structures as a generalized version of meta-
paths for relevance computations in heterogeneous information
networks [15] by utilizing user-specified meta-structures as input
seeds for all subsequent analyses of the network.

All of the above works make more or less explicit use of the
heterogeneity of the networks. However, they also include domain
specific knowledge. While such information is frequently available
in settings such as scientific publication networks, these networks
are not representative of the breadth of available data. In contrast,
we generalize feature extraction to applications in which only a set
of node labels is known in addition to the connectivity information.

An approach that does not use domain knowledge for the extrac-
tion of heterogeneous features is given by Fang et al., who learn
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and predict semantic proximity of nodes through the extraction of
meta-graphs as features [7]. However, they rely on the existence
of bipartite symmetries in the network to specifically extract meta
graphs for proximity prediction, which do not work as universal
features. In contrast, we present an approach for extracting sub-
graph features for general heterogeneous networks that do not
require the presence of intrinsic symmetries or are designed with a
focus on pairwise proximity computations between graph nodes.

Node Feature Extraction. A number of existing works focus
on the extraction of representations or embeddings for nodes of
a graph that can then be used for predictive tasks within the net-
works. To identify the role of nodes in a graph, Henderson et al.
present an approach that is based on the premise of structural equiv-
alence, which postulates that nodes with similar neighbourhood
structure have similar roles [13]. Perozzi et al. learn latent social
representations for nodes in a social network [27]. To this end,
they employ an approach that is reminiscent of word embeddings
in (relatively) low-dimensional vector spaces and apply it to ran-
dom walks around nodes in the network. A similar approach by
Grover and Leskovec [10] learns node embeddings in graphs based
on random walks through local neighbourhoods of nodes. Their
method combines different schemes for localized neighbourhood
exploration and can be tuned to the current domain.

An important aspect of multi-mode networks that is missing in
previous approaches is a reflection of the heterogeneity of node
neighbourhoods in the network. Additionally, methods that are
based on random walks suffer from the sparsity of the neighbour-
hood around low-degree nodes, which is problematic in real-world
networks with skewed degree distributions. If the immediate neigh-
bourhood of a node is very small and most higher-order neighbours
are reached through a high-degree node, then a random walk re-
trieves non-local information very quickly. It is thus unsurprising
that the length of the random walk has been found to have little
impact on the performance of the resulting feature [27]. Most net-
works consist of disproportionately many nodes with a low degree
that are well connected through hubs, which compounds this ef-
fect. Here, we introduce a subgraph-based method that negates this
problem since the local sparsity itself is part of the feature.

Subgraph Mining and Encodings. A large body of research
exists on the topic of subgraph mining, which is too extensive to
cover here in its entirety. Primarily, a focus is put on efficient meth-
ods for the enumeration of a given subgraph (or class of subgraphs)
in a large graph data set or data base, i.e., the answering of subgraph
queries [12]. Optimizations range from a specialization on the type
of graph such as cohesiveness of the subgraphs [31], connectivity
of the subgraphs [1], to a parallelization of the implementation [32],
diversification of the results [46], reductions in memory usage or
machine size [20], or the quantification of graph patterns for asso-
ciation rule mining [6]. For a more in-depth overview of subgraph
mining algorithms, we refer to the survey by Jiang et al. [18].

For subgraph encodings, an early contribution was given by
Yan and Han with DFS-codes as canonical representations of sub-
graphs [44] that were originally designed for graph indexing [45].
More recently, Mason et al. introduced a scheme for encoding node
neighbourhoods in cellular networks that is based on an enumera-
tion of labellings for the local neighbourhood around a node, which
they use for a topological comparison of cellular networks [21]. Due

to the geometrically motivated construction, it is strictly limited to
spatially embedded networks. Here, we introduce a novel encoding
scheme for the representation of heterogeneous subgraphs that
includes node labels in a characteristic sequence.

NetworkMotifs. A concept similar to subgraphmining is known
as network motifs, which were introduced by Milo et al. [24] and
are frequently used, predominantly in the analysis of biological
networks. Motifs represent subgraphs that occur significantly more
(or less) frequently in an observed network than they do in a com-
parable network model. As such, network motifs rely heavily on
the existence of a proper network model for the data at hand, which
may be unavailable in many cases. If a proper model for the network
under consideration is unknown, the wrong choice of model for
the determination of significance may lead to heavily biased results.
This has led to criticism and calls for caution from the commu-
nity [2], and makes motif-based analysis difficult to use in practice.
On an algorithmic level, Wernicke provided an efficient algorithm
for the extraction of all subgraphs of a network that are of a given
size [41]. The algorithm can be extended to include the comparison
to a graph model for significance analysis and is implemented in the
tool FANMOD [42]. Ribeiro and Silva [30] introduce an algorithm
for the extraction of colored network motifs that employs gTries to
enumerate all relevant subgraphs.

Compared to approaches for mining (colored) motifs, the extrac-
tion of heterogeneous subgraph features differs in one important
aspect, as the enumeration of all global subgraph counts of a graph
is inherently different from a local census of rooted subgraphs
around selected nodes. Since motif analysis specifically aims at the
enumeration of all subgraphs of a given network (or the generation
of a representative sample), it is prohibitively expensive for all but
the smallest subgraphs and networks. For feature extraction, we
do not require a full enumeration but can rely on the subgraph
counts around nodes that are chosen as a representative sample of
the entire graph. Thus, using a census of rooted subgraphs around
nodes as node features allows us to obtain subgraph counts that are
substantially different from those that are used in motif analysis.
As a result, motif extraction algorithms are ill-suited to subgraph
feature extraction and we thus rely on an efficient encoding and
exploration scheme as discussed in the following.

3 FEATURE MODEL
Let G = (V ,E) denote an undirected graph without self loops over
the set of nodes V that are connected by edges E. We write vw ∈ E
if nodesv andw are connected by an edge. To represent the distinct
labels (i.e., types or classes) of nodes in a heterogeneous network,
we introduce a set of node labels L along with a function λ : V → L
such that λ(v ) ∈ L ∀v ∈ V . A heterogeneous network is then a
labelled graphG = (V ,E,L). In the following, we omit L where it is
clear from context. To distinguish between networks with different
levels of connectivity within the classes of nodes that are given by
the labels, we introduce the notion of a label connectivity graph, in
which all nodes with the same label are aggregated into a single
node. Thus, the label connectivity graph of a network contains
self loops iff the network contains edges between nodes with the
same label. In Figure 1A, we show an example of a heterogeneous
publication network and its corresponding label connectivity graph.
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We callG ′ = (V ′,E ′) a subgraph ofG andwriteG ′ ⊆ G ifV ′ ⊆ V ,
E ′ ⊆ E and v,w ∈ V ′ for all vw ∈ E ′, i.e., if G ′ is contained in G.
The set of rooted subgraphs for a root node v ∈ V is defined as
S (v ) = {G ′ ⊆ G |v ∈ V ′}, i.e., the set of all subgraphs of G that
contain v . To represent the local neighbourhood around a node v
in G, we can thus extract a census of distinct subgraphs containing
v (i.e., a count). In the following, we discuss the extraction and
encoding of such heterogeneous subgraph counts from a network.

Graph Isomorphism. A central aspect of subgraph extraction
is related to graph isomorphism. During the exploration of the
neighbourhood of a starting node, the nodes of structurally iden-
tical subgraphs may be visited in a different order, depending on
the traversal of the neighbourhood. Therefore, the correctness of
the subgraph census depends on a matching of identical subgraphs,
independently of the order in which the nodes are visited. To for-
malize this problem, assume that we are given two labelled graphs
G = (V ,E) and G ′ = (V ′,E ′) over the same set of labels. We say
that G is isomorphic to G ′ (and write G ≃ G ′) if there exists a bi-
jection ϕ : VG → VG′ with the following two properties: (i) uv ∈ E
iff ϕ (u)ϕ (v ) ∈ E ′ ∀u,v ∈ V . (ii) λ(v ) = λ(ϕ (v )) ∀v ∈ V . Therefore,
two isomorphic graphs cannot be distinguished unless some node
ordering is taken into account. Thus, the intuitively desired fea-
ture of a subgraph encoding scheme is the ability to distinguish
subgraphs up to isomorphism. Unfortunately, efficient solutions
for isomorphism detection pose a challenge since it is unknown
whether a polynomial solution to the problem exists [3]. However,
this difficulty is ameliorated by the fact that subgraph features rep-
resent the local neighbourhood of nodes and thus do not need to
be arbitrarily large. Therefore, the number of nodes in subgraphs is
limited to a size where the isomorphism problem becomes manage-
able with the correct encoding scheme. Furthermore, a low level of
imprecision in the encoding does not decrease the quality of predic-
tions that are based on the resulting features, as long as the number
of ambiguous encodings is small compared to the overall number
subgraphs. We use these observations to introduce an encoding
scheme for heterogeneous subgraphs in the following.

3.1 Subgraph Encoding
The most time consuming aspect of the subgraph census is the iso-
morphism test that has to be performed for every newly discovered
subgraph. While this problem has no known polynomial solution,
a suitable encoding can be used to solve it for small subgraphs and
approximate it for larger subgraphs. Furthermore, the isomorphism
test should support an efficient subgraph comparison to avoid an
overall quadratic complexity for the comparisons to previously
discovered subgraphs. Therefore, we design a pseudo-canonical
subgraph encoding in such a way that two small subgraphs are
isomorphic iff their encodings are identical. Instead of checking two
small subgraphs for isomorphism, it is thus sufficient to compare
their encodings. Furthermore, a hashable encoding enables the use
of hashmaps to keep track of the subgraph census, thus reducing
the complexity for the extraction of a single subgraph occurrence
to O (1) for fixed maximum subgraph size. Our encoding is based
on the labelled degree sequences of subgraphs, defined as follows.

Characteristic Sequence. Given a subgraph H = (VH ,EH ) ⊆
G, for each vertex v ∈ VH we define a sequence sv = t0, t1, . . . , tk

Figure 1: A: Scientific publication network of institutions
I , authors A and publications P , with corresponding label
connectivity graph. B: Characteristic sequence of a 3-node
graph example. C: Two non-isomorphic graphswith a single
label sharing the same encoding (left). Two non-isomorphic
graphs with three labels and colliding encoding (right).

of k = |L| integers, where t0 = λ(v ). For some fixed ordering of
labels l = 1, . . . , |L|, each tl is the number of neighbours of v with
label l .

tl = |{u ∈ VH | uv ∈ EH , λ(u) = l }| (1)
Based on these sequences, we then define the characteristic sequence
sH of the subgraph H as the concatenation of all sequences of
individual nodes. Formally we let

sH = (sv1 , sv2 , . . . , svn ) (2)

where n is the number of nodes in the subgraph. The sequences svi
are sorted in lexicographic order such that sv1 ≥ sv2 ≥ · · · ≥ svn .

Example. Consider graphs with three labels L = {x ,y, z}. The
sequence z010z010y002 then encodes a graph with three nodes and
two edges. The first node has label z and no neighbours with label
x , one neighbour with label y, and no neighbours with label z. The
second node has identical label and neighbourhood to the first node,
while the third node has label y and two neighbours with label z.
Overall, the encoding represents a graph that is a path of length
three with labels z and y (see Figure 1B). Note that the encoding
does not reveal which of the three nodes is the starting node, since
we found no benefit to such a distinction in our experiments for the
heterogeneous subgraph features. If desired, it would be a simple
matter to extend the model by introducing a distinct label that is
used specifically to mark the starting node.

Limitations. It is important to note that the encoding as in-
troduced above is not unique for graphs of arbitrary size, since
graph encodings may collide for larger subgraphs (see Figure 1C).
Formal proof of subgraph multiplicities (and ensuing collisions)
would require knowledge of the number of graphs with a given
degree sequence, which has so far been elusive despite extensive
research (see [22] for an introduction). However, an enumeration of
all possible non-isomorphic labelled graphs with a pairwise check
against the encoding can be used to derive upper bounds. We find
that the maximum number of edges that a subgraph may contain
to ensure unique encodings is emax = 5 for graphs without loops
in the label connectivity graph and emax = 4 for graphs with loops
in the label connectivity graph. In practice, however, extensive
testing showed that the collisions have no negative impact on the
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quality of the resulting features and that larger subgraphs serve as
more discriminative features, since the overall number of collisions
is negligible when compared to the number of subgraphs. Thus,
collisions are no limitation to a practical application of the features.

Furthermore, we find that higher values of emax correspond to
a higher discriminative power and thus to a better performance
of the features. However, higher values of emax also increase the
necessary feature extraction time since the number of possible
subgraphs around a node grows roughly exponentially with the
size of the subgraph. As a result, emax should be selected as high
as possible without impeding the feature extraction process. In
practice, we find emax = 5 to be a reasonable value for experiments
on real-world network data.

3.2 Feature Extraction
Based on the above encoding, we now define heterogeneous sub-
graph features and discuss their extraction for a given node v . We
limit their size by the number of contained edges emax .

Feature Definition. LetH denote the set of all connected sub-
graphs of G that contain v and have at most emax edges. Let
RH ⊆ H denote a representative sub-system ofH with respect to
≃, i.e., every H ∈ H is isomorphic to exactly one element in RH .
The subgraph census then is a function sc : V × RH → N with

sc (v,H ) 7→ |{H ′ ∈ H | v ∈ VH ′ ∧ H ′ ≃ H }| (3)

Thus, for each subgraph type, we compute the number of times it
can be found in the neighbourhood of the start node v . Using the
encoding to replace the isomorphism check, we obtain

c (v,H ) 7→ |{H ′ ∈ H | v ∈ VH ′ ∧ sH ′ = sH }| (4)

The counts c (v,H ) of all possible subgraph encodings then provide
the heterogeneous subgraph feature space. That is, each distinct
subgraph encoding serves as one feature, along with its count.

Implementation. In the design of the subgraph extraction al-
gorithm, we first observe that this enumerative task is always com-
putationally expensive [8], which encourages the implementation
of efficient enumeration strategies. Thus, we base our algorithm
for heterogeneous subgraph counting on four key concepts: (i) sub-
graphs around a given root node are expanded and enumerated
incrementally, (ii) subgraph encodings allow efficient incremental
updates, (iii) hashed encodings replace isomorphism tests with
constant-time operations, and (iv) the node-based enumeration
scheme supports by-node parallelization and sampling strategies.

Based on these considerations, we find that an approach based on
depth-first search around the given root node performs well, as long
as it is adjusted to the enumeration task and network topology. Each
time a new node is discovered, it is added to the subgraph and the
count of the resulting encoding is updated in a hash map. Hashing
the encoding based on the above scheme is a trivial matter since it
can be represented as a string. Due to the lexicographic ordering, it
is also possible to efficiently update the encoding by adding nodes
during the expansion of subgraphs. Once the maximum number of
edges per subgraph is reached, backtracking allows the exploration
of further subgraphs around the root node. Since the basic approach
is straightforward, we omit the algorithm and focus on heuristic
considerations and optimizations that make this approach feasible
in practice for heterogeneous networks with skewed topology.

Parallel Space Complexity. With the enumeration being triv-
ially parallelizable by starting node, the memory usage is of interest.
Here, we observe that the connectivity information given by the
edges is not altered during the execution of the algorithm. The edge
list can thus be shared among multiple threads. For each starting
node, we only need to store data for all discovered nodes during the
current iteration, which is in O (V ). For an implementation with
t parallel threads, the overall memory usage is thus in O (tV + E).
Since most real-world networks tend to require the majority of nec-
essary systemmemory for storing edge information (i.e., |V | ≪ |E |),
a parallelization is thus unproblematic for the available number of
parallel threads on current computing hardware.

Hashing Optimization. Since the length of the characteristic
sequences that represent identified subgraphs is bounded from
above by a constant (equal to the maximum size of subgraphs
times the number of distinct labels), the computational cost for
hashing the sequence of a subgraph can be regarded as constant. A
representation of the sequences as strings allows for a direct hashing
strategy in most programming languages. In practice, however, the
conversion to strings and the subsequent hashing of the strings can
be costly. Here, we observe that the sequences are represented as
vectors of integers and can thus be used directly as input for the
computation of the hash value without the conversion to strings.
Ideally, a hash function for characteristic sequences should be both
fast to compute for integer sequences and also easy to update with
new nodes so that we do not have to recompute the hash value of
the entire sequence when subgraphs are expanded. One possible
hashing scheme that supports such manipulations is provided by
rolling hash functions, which were originally introduced for string
hashing [19]. Thus, we propose a scheme that is based on the idea
of representing the individual integer components of the sequence
as factors of the powers of an appropriate base b. Specifically, we
use a different base bl for each label l ∈ L. Recall that the sequence
sv = t0, t1, . . . , tk encodes the neighbouring labels of one nodev in
the subgraph, where t0 is the label of the node itself and the values
tl correspond to the number of neighbours of v that have label l .
We select the appropriate base bv that corresponds to the label of
v and compute the contribution of node v to the hash value as

h(sv ) :=
|L |∑
i=1

tib
i
v (5)

Due to the lexicographic ordering of the characteristic sequence,
this value is well defined. To obtain the hash value h(sH ) of the
entire subgraph, we then simply compute the sum of all individual
nodes’ contributions and apply an appropriate modulo to keep the
size of the hash value manageable. In an implementation of this
scheme, we can pre-compute the powers of the base, multiply them
by the integers in the characteristic sequence and compute the
sum. If a new node is added to the subgraph, it is then sufficient to
compute the new node’s contribution to the hash value, increase the
contributions of adjacent nodes accordingly, and add them to the
hash value. Since the computation of this hash value now relies on
a series of simple multiplications and additions, it can be computed
efficiently and updated in less time than it would take to recompute
it for each update of the subgraph.
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Heterogeneous Optimization Heuristic. This heuristic ex-
ploits the heterogeneous structure of the graph and is based on the
observation that the addition of a new node to an existing subgraph
yields identical subgraphs for each new node with identical label.
Thus, instead of using individual increments for each node, we can
group neighbouring nodes according to their label and increase the
corresponding subgraph counter by the number of adjacent nodes
per label. It is still necessary to explore each of these neighbours sep-
arately (since their respective neighbourhoods are likely different).
With this approach, it is sufficient to compute the modified hash
value only once per label. In particular for graphs with a relatively
low number of labels, this decreases the effort dramatically from
deдree (v ) tomin{deдree (v ), |L|} computations (or updates) of hash
values per node. The re-discovery of adjacent nodes that are already
contained in the subgraph then requires special consideration as a
border case, but the entire approach can be implemented efficiently
by sorting the adjacency lists of nodes by label.

Topological Optimization Heuristic. A skewed distribution
of degrees with a long tail is common to most networks, such that
the majority of nodes have a fairly low degree, while only few
nodes have extraordinarily large degrees. Such high-degree nodes,
so called hubs, play a central role in the computational cost of
subgraph enumeration since they (i) inflate subgraph counts of
adjacent nodes and (ii) connect remote regions of the network that
share little relation. It is questionable whether subgraphs that are
induced by passing through such hubs are actually meaningful for
neighbouring nodes with a small degree. Based on this motivation,
we suggest the use of amaximumdegree constraint parameterdmax
that is used in the exploration phase. If a nodew is discovered in
the neighbourhood of a node v such that deдree (w ) > dmax , then
we addw to the subgraphs of v but do not explore beyondw . Note
that we still include the label information of the hub itself. This
approach considerably reduces the amount of required subgraph
explorations, since hubs induce many more subgraphs than nodes
with lower degree nodes. In Section 4.3.4, we analyze the impact of
this heuristic on the predictive performance of the features.

4 EVALUATION
In the following, we compare the predictive performance of het-
erogeneous subgraph features to features engineered with domain
knowledge and to state-of-the-art neural embeddings. As evalu-
ation tasks, we consider the prediction of institution success in
scientific publication networks and the prediction of node labels.

Figure 2: Label connectivity graphs of the evaluation net-
works. MAG for rank prediction (left) and label prediction
(right) with authorsA, institutions I , conferencesC, journals
J , fields F , and papers P . LOAD with locations L, organiza-
tions O , actors A, and dates D. IMDB with movies M , actors
A, directors D, writersW , composers C, and keywords K .

4.1 Evaluation Data Sets
To demonstrate the results on diverse data sets and highlight the
general applicability of the subgraph features, we select three struc-
turally different networks for evaluation. As shown in Figure 2, the
network types range from strongly interconnected relationships
between labels to the star-like structures of knowledge bases.

Scientific Publication Network. These networks constitute a
well known type of heterogeneous network. For our experiments,
we use the Microsoft Academic Graph (MAG) [33], which is a
node-heterogeneous graph containing scientific publication records,
citation relationships between those publications, as well as authors,
institutions, journals, conferences, and fields of study. We use two
subsets of this data. For the rank prediction task, we employ a
subset of institutions, authors, and papers centered on the respective
institutions as specified in Section 4.2. For the label prediction task
we extract all papers from the conferences KDD and ICML from
2011 to 2015, then add all referenced papers, their conferences,
journals, authors, institutions and fields of research. The resulting
network has 73, 176 nodes, six labels, and 372, 737 edges.

Entity Co-occurrence Network. The LOAD network is an en-
tity co-occurrence network that is constructed from disambiguated
named entity mentions in the text of Wikipedia, namely locations,
organizations, actors, and dates [34]. Thus, the network covers the
category of word co-occurrence networks that are frequently used
for the evaluation of label prediction approaches, but provides more
intuitive node labels than the frequently used parts-of-speech. We
use a version of this network that is constructed from Wikipedia
articles about the American Civil War2. We extract the four major
types of entities to obtain a very dense network with four labels,
55, 319 nodes, and 1, 130, 372 edges.

Movie Network. As the final network, we use another well
known data set that has a very clear network structure, the movie
data from the Internet Movie Database (IMDB). Although it is pro-
prietary, the data is available for research3 and frequently used as
an example in the analysis of heterogeneous networks or recom-
mendation tasks. The data set is not provided as a graph but as lists
of entities that can be parsed to extract a proper network of movies
(we discard data related to TV-series and video games). To select
a subset of the data, we consider classic movies from the Golden
Age of Hollywood (released between 1930-1940). For each such
movie, we add the actors, directors, writers, and composers that
were involved in the production, as well as keywords to the set of
nodes, and connect them to the movie itself. The resulting network
has six labels, 48, 555 nodes, and 213, 562 edges. It is an example
of data with a traditional relational record-like structure and as
one can see from the label connectivity graph, it has a star-like
structure that is more sparse in contrast to the LOAD network.

4.2 Rank Prediction Evaluation
To compare the performance of classic, subgraph and embedded
features on a task for which rigorous ground truth data is available,
we predict the relevance of research institutions for conference con-
tributions in computer science based on the criteria defined in the
2016 KDD Cup. Specifically, we consider 741 research institutions

2https://dbs.ifi.uni-heidelberg.de/resources/load/
3http://imdb.com/interfaces/

https://dbs.ifi.uni-heidelberg.de/resources/load/
http://imdb.com/interfaces/
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that employ authors who published at the conferences KDD, ICML,
FSE, MM and MobiCom. The 2016 KDD Cup4 provides labelled data
for these conferences for the years 2011-2015, which we extend back
to 2007 with data that we crawled from the ACM Digital Library.
We use the years 2007-2014 for training and predict the relevance of
an institution for the year 2015. The relevance relI of an institution
I is defined based on three directives as follows: (i) Each accepted
full paper at a conference has an equal vote. (ii) Each author has
an equal contribution to a paper. (iii) For authors with multiple
affiliations, each affiliation contributes equally. The relevance of
an institution is then given by the sum of all individual author
contributions. Since the relevance scores are not normalized, we
evaluate the performance per conference.

4.2.1 Evaluation Metric. In accordance with the original task
definition, we use the normalized discounted cumulative gain for
the top-20 rankings to evaluate the predicted relevance ranking
scores. The NDCG at top-n was proposed by Järvelin et al. [17] and
is defined for the purpose of our evaluation as:

NDCGn =



n∑
i=1

reli
log2 (i + 1)





n∑
j=1

relj

log2 (j + 1)



−1

(6)

where i is the predicted ranking position of an institution while j
is the real ranking according to the ground truth. NDCG scores lie
in the interval [0, 1], with 1 corresponding to a perfect prediction.

4.2.2 Feature Extraction. We distinguish between three types
of features. Classic features include features that are engineered to
reflect factors influencing publication success, as well as linguistic
features that reflect the content of articles. Subgraph features are
the novel feature type discussed in Section 3. Embedded features in-
clude the three state-of-the-art neural node embedding techniques
LINE, node2vec, and DeepWalk as representatives that perform
best among this type of feature. All features are extracted for each
institution per conference and year.

Classic Features. These features include the relevance score
of each institution for the years 2007-2014, both (i) as an absolute
number and (ii) normalized by the number of accepted papers for
this conference and year. We also include (iii) the amount of full-
papers published by each institution in the past, and (iv) the amount
of all papers, including workshop and demo papers. We generate
features from authorship data to allow predictions of how many
papers an author is going to contribute to a conference based on
his previous publications. Specifically, we calculate each author’s
average paper count per year and conference and generate (v) the
authorship feature by grouping authors by institution and summing
their scores. While it is possible for authors to be affiliated with
multiple institutions over the years, such cases are exceedingly rare
within the data. We furthermore consider the number of authors
that each institution had at a conference in the past, split into
(vi) authors of full papers and (vii) authors of short papers. Based on
the intuition that the last-author position on a paper often indicates
a senior research group member and the name is thus more likely to
appear on papers in subsequent years, we include (viii) the number
of last author occurrences for institutions as a final feature.

4https://kddcup2016.azurewebsites.net/

Classic Linguistic Features. To augment the set of classic fea-
tures, we include linguistically motivated features. For each paper,
we extract the number of different institutions, the number of key-
words, the length in characters of the title, and the number of
stemmed words per title (excluding stopwords). Additionally, we
use frequency distributions of words and parts-of-speech in the
titles and calculate the fractions of word parts-of-speech in the title.
We aggregate these features by institution per conference and year.
For each conference, we create a list of the overall top-20 title words
from accepted papers and use it to derive the average number of
occurrences of these words for each institution. In total, we extract
32 linguistic features for each institution: 4 simple features (average
number of institutions, keywords, words in title, and characters in
title), 8 features for the word classes (noun, verb, adjective, adverb,
numbers, and punctuation), distribution and fraction of words, and
20 features for the usage of the top-20 title words.

Subgraph Features. To predict institution relevance, we focus
on the neighbourhood of institutions in the graph. For feature
extraction, we thus use induced subsets of the MAG that contain
the institutions, authors, and papers for each target conference and
year, as well as all referenced papers with a distance of at most 2 to
papers published at the selected conferences (additional tests that
we do not include here show that increasing this distance improves
the results only slightly). For an overview of the data, see the label
connectivity graph in Figure 2 (left). Note that this subset selection
step is the only step that could be considered usage of domain
knowledge in the subgraph feature extraction. While the MAG
contains directed and undirected edges, we found no improvement
in the prediction results when using directed edges and thus report
the results only for the undirected case.

We run the subgraph extraction algorithm for each institution to
extract the frequencies of all heterogeneous subgraphs that contain
the institution and have at most emax = 6 edges. We use dmax = ∞,
i.e., we do not apply the maximum degree heuristic to this task.

Combined Features. To evaluate how well the classic and sub-
graph features complement each other and to assess the effective-
ness of subgraph features as an enhancement to features derived
with domain knowledge, we also consider the set of combined
classic and subgraph features.

Embedded Features. To compare the performance of hetero-
geneous subgraph features to state-of-the-art neural embedding
node features, we include features extracted with LINE, DeepWalk,
and node2vec. All three methods rely on a neural network em-
bedding of the neighbourhood of nodes in the network that was
originally conceived in natural language processing to learn word
representations in high-dimensional vector spaces according to
their context [23]. LINE is a technique for large information net-
work embedding. It optimizes the embedding towards retaining
both the local and global network structure by integrating them in
a unified objective function [38]. To this end, the method relies on
extracting the first- and second-order proximity of nodes, which
are concatenated into a combined vector representation. DeepWalk
was originally designed to learn latent representations of nodes in
social networks and uses local information that is obtained from
truncated random walks around a node as input sequence [27]. The
required notion of directedness is derived from the sequence of
nodes in the random walk. While the method uses the length of

https://kddcup2016.azurewebsites.net/
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the random walk as a parameter, the authors note that they found
little impact on the performance when using various walk lengths.
In contrast to this strictly random walk based approach, node2vec
combines different exploration strategies for the extraction of lo-
cal node neighbourhood information to learn continuous feature
representations of nodes as neural network embeddings [10]. The
method uses second-order random walks, which allow a tuning
of the exploration towards a more localized or a more in-depth
approach. As a result, the method benefits from both breadth-first
as well as depth-first search information in the node neighbour-
hood, at the cost of adding two parameters that require tuning. For
all three embedding approaches, we use the recommended default
parameters. That is, where applicable, we use an embedding dimen-
sion d = 128, walks per node r = 10, random walk length l = 80,
context size k = 10, return parameter p = 1, in-out parameter q = 1,
and number of negative samplings K = 5.

4.2.3 Experimental Setup. Since the ranking task is best formu-
lated as a regression problem, we select a set of standard machine
learning regressors: linear regression, decision trees, random forests
and Bayesian ridge (we also evaluated based on SVM and stochastic
gradient descent, but found that these performed poorly across all
features and thus omit the results). We do not tune the hyperpa-
rameters of the regressors and use the default configuration for
each method provided by the Scikit-learn library [26]. For random
forests, we increase the number of trees to 300 to obtain meaningful
results that we can use in the feature importance analysis. Random
forests and Bayesian ridge are robust enough to be trained on the
entire set of features. However, for Bayesian ridge, we find that it
yields better results (across all features) when we select the 60 best
features in a univariate analysis, and thus report these results in
the following. Linear regression and decision trees are less suited
for large sets of noisy features and performed very poorly in our
initial tests. To overcome this, we select the 5 best features by a
univariate test using a quick linear model.

4.2.4 Ranking Task Evaluation Results. We provide the results of
our experiments in Figure 3. While the performance of the features
varies by regression method and target conference, we find that
classic and subgraph features perform well overall, but embedded
features perform consistently worse. As the only exception, LINE
has a reasonably good performance as a feature for random forests,
where it outperforms all other features in one single instance (FSE).
In all other cases, neural embeddings perform poorly for this task.
Analyzing the results by regression method to assess the stability,
we find that the results of Bayesian ridge and random forest are
the most stable for all features over the different conferences. For
these methods, the subgraph features consistently perform better
than the classic features, while the combination of both features
compensates for performance drops in either of the features and
yields stable results. Predictions made with Bayesian ridge are al-
ways superior when they include subgraph features, and random
forests with subgraphs produce better or comparable results to
classic features for all five conferences. The performances of linear
regression and decision trees are less stable and fluctuate strongly
by conference, which we attribute to the restriction to the top-5
features for these methods. Since subgraph and embedded features
are more numerous than classic features, it is sensible that they
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Figure 3: Comparison of NDCG values for the four predic-
tivemethods, using classic, subgraph, combined, and embed-
ded features to predict institution relevance for five confer-
ences. Error bars denote 95% confidence intervals.

Table 1: Average NDCG scores over all conferences per pre-
dictive method and type of feature.

LinRegr DecTree RanForest BayRidge
classic 0.65 0.58 0.64 0.51
subgraph 0.58 0.51 0.68 0.65
combined 0.62 0.46 0.68 0.60
node2vec 0.18 0.19 0.39 0.27
DeepWalk 0.14 0.17 0.25 0.18
LINE 0.17 0.23 0.56 0.23

perform better without this restriction. For linear regression and de-
cision trees, no single feature is clearly preferable, although classic
features perform better in this case.

In Table 1, we show the average NDCG score over all confer-
ences. Here, the highest score is achieved for random forests, where
we observe a tie between subgraphs as stand-alone features and
in combination with classic features, while classic features are a
close second. With the exception of decision trees, the combination
of classic and subgraph features results in the overall most stable
performance. While this is not an indication that subgraph features
are better than classic features, their performance is comparable.
The low performance of neural embedding features for this task
is not surprising, given that they only use structural information
from the network, which is not enough to predict success as a
non-structural, abstract feature in the graph. On the other hand,
it is noteworthy that the subgraph features, which are predomi-
nantly structural features as well, perform so much better just by
including the label information. As a result, we find that subgraph
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features can serve as out-of-the-box features on novel data or in
instances that do not allow for the extraction of classic features
when such domain knowledge is not available. Given the immense
manual effort that is required to engineer classic features, this is
clearly advantageous, even in settings where classic features can
be used. Additionally, subgraph features offer further insights into
the importance individual features as we discuss in the following.

4.2.5 Feature Importance. An important aspect of any feature
in applied learning is its expressiveness. While embedded features
offer no insights into the classification process due to their abstract
nature, classic and subgraph features contain further information.
We use the random forest regressor to obtain feature importance.

Classic Features. The most expressive classic features are the
rank of institutions and the total paper counts in previous years.
Other classic and linguistic features play a much less prominent
role. Since the prediction of the rank of an institution from the rank
in previous years is intuitive and constitutes expected behavior, the
knowledge we gain from this feature importance is limited.

Subgraph Features. In contrast, these features allow us to de-
rive more detailed insights into the data. In Figure 4, we show the
most discriminative subgraph features for the rank prediction task.
The subgraphs can be interpreted to allow conclusions about the
structure of the data, for example by identifying important sub-
structures. In the case of this evaluation, we find that collaboration
across institutional boundaries is apparently a reasonably good
characteristic of relevance, as several such structures exist in the
most discriminative subgraphs (i.e., two authors of different institu-
tions that collaborate on a paper). On the other hand, authors with
multiple affiliations do not seem to play a significant role. While
such observations are anecdotal, they offer insights into both the
data and the task, which opens new possibilities for more special-
ized and elaborate feature extraction or prediction techniques, that
neither classic nor embedded features can provide.

4.3 Label Prediction Evaluation
As a second evaluation task, we consider label prediction on the
three heterogeneous networks introduced in Section 4.1. For two
of the networks, no data is available that would allow us to extract
classic features (an observation which holds for the majority of
available network data sets). Thus, we focus on the comparison
between subgraph and embedded features, since some of the latter
were specifically designed and tested for this task. For each label
type, we extract the features of nodes with this label, divide the
nodes into training and test data, and train prediction classifiers
for each type of feature. For nodes in the evaluation set, we then
use the trained classifiers to predict the label.

4.3.1 Evaluation Metric. To evaluate the correctness of the pre-
dicted node labels, we use the Macro F1 score as the average of the
F1 scores for the individual nodes v in the test set T , defined as

Macro F1 =
1
|T |

∑
v ∈T

2 · prec(v ) · rec(v )
prec(v ) + rec(v )

(7)

where prec(v ) is the fraction of predicted labels that are correct and
rec(v ) is the fraction of correct labels that were predicted. Since all
nodes in the networks have exactly one label, the F1 score would
be an equally valid metric. We are using this metric specifically for

Figure 4: The two most discriminative subgraphs with rele-
vance scores for each conference according random forests.

Table 2: Macro F1 scores for subgraph features for varying
levels of themaximum degree parameter. The value of dmax
is set to disable exploration beyond nodes with a degree
greater than the maximum degree in the given percentile.

dmax parameter level
90% 92% 94% 96% 98% 100%

LOAD 0.76 0.75 0.73 0.76 0.74 –
IMDB 0.44 0.39 0.43 0.55 0.54 0.55
MAG 0.55 0.35 0.36 0.30 0.40 –

comparability to the results of the embedded features, which are
originally evaluated with the Macro F1 score.

4.3.2 Feature Extraction. For each of the networks, we select
250 nodes of each label and extract all three features for these nodes
as training and test data. For LINE, node2vec, and DeepWalk, we
utilize the recommended default parameter values (see Section 4.2.2).
We use emax = 5 for the heterogeneous subgraph features. Since
only the subgraph features encode label information, we include an
adjustment to the encoding scheme to avoid unfair bias. While the
label of the starting node is not obvious from the subgraph encoding
itself, the inclusion of the starting node’s label may introduce a bias,
since the increased frequency of the label in all rooted subgraphs
around the node is encoded. To avoid this problem, we apply an
artificial starting label to all starting nodes during the extraction
process that masks the node’s label in the feature.

4.3.3 Experimental Setup. We use logistic regression as a clas-
sifier to be in conformance with the reference evaluations of the
embedded features in the respective original publications [10, 27].
For all four types of features, we tune the regularization strength
and use L2 regularization. From the extracted node features for
each label, we train classifiers in a one vs. all setting such that we
obtain one classifier for each label that provides a probability score
of nodes in the unseen test data having the respective label. For
prediction, we then select the label with the highest probability
score for each node and use it for evaluation.

4.3.4 Maximum Degree Parameter Stability. In Section 3.2, we
introduced the parameter dmax as a heuristic to avoid the addition
of nodes to a subgraph that can be reached only through a hub node
with extremely high degree. We evaluate this parameter on all three
networks by adjusting dmax to correspond to the percentage of
nodes in the network that have degree dmax or less. The results are
shown in Table 2. For the two larger networks, we do not show the
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Table 3: Execution time per node (in seconds) for feature ex-
traction. Percentiles denote the amount of nodes for which
the feature extraction completes in at most the given time.

subgraph features n2v DW LINE
mean 75% 90% 95% max mean

LOAD 32.1 19.6 29.7 53.0 1046 0.19 0.11 0.66
IMDB 2.6 1.7 3.0 6.7 47 0.01 0.01 0.64
MAG 25.2 10.4 11.0 19.5 2493 0.02 0.01 0.49

results for dmax = ∞ (100%) since the extraction did not finish due
to the large number of subgraphs that are introduced by hubs. The
results for LOAD are very stable, while the results for IMDB and
MAG are less stable. These observations correlate with the density
of the networks, where features in sparser networks become less
stable the more hubs are ignored. Overall, we find that dmax is
a helpful heuristic for dense networks with large hubs, where it
enables efficient subgraph feature extraction, but should not be
overused for smaller or less dense networks. For the following
evaluations, we use a dmax value at the 90% mark.

4.3.5 Runtime Evaluation. An important aspect of feature ex-
traction is the computational effort. In Table 3, we show the time
requirements for extracting subgraph features. For comparison, we
also include the runtime of the three neural embedding approaches,
which are faster to extract than subgraph features. Among the em-
beddings, LINE is much slower than node2vec and DeepWalk. The
significant differences in runtime to the subgraph features can be
explained by sampling: while our method enumerates all subgraphs
around a node, the embedding techniques sample via a fixed set
of random walks or local searches. For the subgraph features, the
overall runtime varies and is heavily skewed since it correlates to
the skewed degree distribution: extracting features for nodes with a
high degree takes longer than for nodes with small degree. Outliers
(see columnmax) occur when a hub is the starting node (recall that
the degree heuristic does not apply in this case). On the one hand,
this problem is easy to avoid by not extracting features for such
nodes. On the other hand, such a sampling approach is of course
problematic for data in which certain features are unique to nodes
with high degree. In practice, we find that prediction performance
does not decrease when we extract features only up to the 95%
mark (i.e., if we ignore the 5% of highest degree nodes).

4.3.6 Label Prediction Evaluation Results. Based on the previous
considerations, we demonstrate the performance of the subgraph
features for the label prediction task. We show the results of our
experiments on the three networks in Figure 5A-C for varying per-
centages of training data (the remainder is used for testing). The
performances of all features vary by network due to the varying
difficulty of the prediction task in each of the data sets. For the
most difficult data set (IMDB), all methods benefit the most from
an increased amount of training data, while this effect is less pro-
nounced for the other data sets. The results show that the node2vec
features are more performant than the DeepWalk features, which
corresponds to previous observations [10]. However, LINE performs
better than the other two neural embeddings in all cases, while all
neural embedding methods are outperformed by the heterogeneous
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Figure 5: A-C: label prediction performance of the subgraph
features, LINE, node2vec, and DeepWalk for the three eval-
uation data sets. The size of the training data (and thus the
test data) is varied in steps of 10%. Error bars represent the
95% confidence interval of the F1 score, for 100 variations of
the training/test set. D-F: Performance ondatawith partially
removed node labels for a training size of 90%.

subgraph features by a large margin. Across all three data sets, only
in one instance does LINE provide results that are comparable to
the subgraph features. The overall gain in prediction performance
by using subgraph features instead of the best embedded features
is as high as 68.8% on the MAG data set.

The performance of the subgraph features for label prediction
can partially be attributed to the inclusion of label information in
the feature. In Figure 5D-F, we thus show the performance for only
partially labelled data on the three evaluation networks. To this
end, we randomly remove a percentage of labels from nodes in the
training data (i.e., we replace their label with an unlabeled-label).
We evaluate with 90% training and 10% test data. The embedded
features are invariant to node label removal and shown as horizon-
tal lines. While the performance of the subgraph features drops as
the percentage of unlabeled nodes increases, they still consistently
perform better than node2vec and DeepWalk, even when 75% of
the nodes have no label information. LINE initially performs worse
than the subgraphs, but catches up as larger percentages of node
labels are removed. Here, we find that the relative performance
of subgraph features compared to LINE strongly depends on the
initial performance gap on the data set. The larger this difference,
the longer it takes LINE to achieve comparable performance. On the



Heterogeneous Subgraph Features for Information Networks GRADES-NDA’18 , June 10–15, 2018, Houston, TX, USA

MAG data, LINE only reaches comparable performance once 75%
of node label are removed, while this is reduced to 25% for LOAD
and 10% for the IMDB data. A pattern that we observe for all three
data sets is a pronounced drop in the performance of the subgraph
features around 25% of removed node labels. Overall, as long as a
substantial fraction of node labels are available, the performance
of subgraph features is consistently strong. As a result, while het-
erogeneous subgraph features are naturally not the best choice for
bootstrap label prediction in setting with no label information, they
perform well even in settings with limited heterogeneity.

5 CONCLUSION
In this paper, we presented heterogeneous subgraphs as a novel,
generalizable approach to engineering features for predictive anal-
yses of heterogeneous information networks. We introduced an
efficient encoding scheme for fast (pseudo-) isomorphism testing of
small, labelled subgraphs. The resulting features are powerful node
representations for predictive learning tasks in heterogeneous net-
works. When used with machine learning techniques that support
the extraction of feature importance, they are directly interpretable
and allow the user to identify discriminative features as substruc-
tures in the network data. In our evaluation on a ranking task in a
scientific publication network, we showed that the subgraph fea-
tures perform at least as well as classic features that are extracted
with domain knowledge. In settings where such domain knowledge
is scarce or cannot be used to engineer classic features, subgraph
features may thus serve as out-of-the-box replacements without
a drop in performance. In particular this observation is remark-
able, since heterogeneous subgraph features encode only structural
information of the network as well as the existence of node label
information, without using the information contained in the labels.

For the task of label prediction, we showed on three structurally
diverse network data sets that subgraph features outperform neu-
ral node embeddings by a large margin. Existing node embedding
techniques provide, without a doubt, powerful features in tasks for
which they have been well tuned. They are, however, not quite as
universally performant as the recent focus on neural embeddings
might suggest. As versatile features for diverse prediction tasks
on unseen data sets with little to no domain knowledge, we find
heterogeneous subgraph features to be easier to interpret, more
versatile and higher performing, albeit at the cost of an increased
extraction time. Based on our results, we provide a parallel imple-
mentation of our subgraph feature extraction framework in C++
and Python to the research community (see link in Section 1).

Future Work. For this project, we made no distinction between
directed and undirected edges in our analysis, since we found no
significant difference in the results for academic citation networks
(which are the only network type with meaningful edge directions
in our tests). However, this finding remains to be investigated in a
more general scope for other types of directed networks.We suspect
that for denser directed networks, directed subgraph features may
turn out to be more performant than the undirected variety. We
also excluded an adaptation of the encoding to edge-heterogeneous
graphs in this paper, which remains to be investigated to establish
heterogeneous subgraphs as truly universal features for learning
in information networks.
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