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ABSTRACT
Efficiently and effectively representing large collections of text is

of central importance to information retrieval tasks such as sum-

marization and search. Since models for these tasks frequently rely

on an implicit graph structure of the documents or their contents,

graph-based document representations are naturally appealing. For

tasks that consider the joint occurrence of words or entities, how-

ever, existing document representations often fall short in capturing

cooccurrences of higher order, higher multiplicity, or at varying

proximity levels. Furthermore, while numerous applications benefit

from structured knowledge sources, external data sources are rarely

considered as integral parts of existing document models.

To address these shortcomings, we introduce heterogeneous hy-
pergraphs as a versatile model for representing annotated document

collections. We integrate external metadata, document content, en-

tity and term annotations, and document segmentation at different

granularity levels in a joint model that bridges the gap between

structured and unstructured data. We discuss selection and transfor-

mation operations on the set of hyperedges, which can be chained

to support a wide range of query scenarios. To ensure compatibility

with established information retrieval methods, we discuss projec-

tion operations that transform hyperedges to traditional dyadic

cooccurrence graph representations. Using PostgreSQL and Neo4j,

we investigate the suitability of existing database systems for imple-

menting the hypergraph document model, and explore the impact

of utilizing implicit and materialized hyperedge representations on

storage space requirements and query performance.

CCS CONCEPTS
• Information systems→Document collectionmodels; •The-
ory of computation→ Data modeling.
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1 INTRODUCTION
What makes a good document representation? The answer to this

question, of course, heavily depends on the context. First and fore-

most, different applications require different information needs to

be taken into account. Second, it must be possible to effectively

realize the basic methods that operate on the documents on some

computing infrastructure. To address the diversity of information

and application needs, many document models and storage solu-

tions have been proposed, ranging from simple bag-of-word models

to themore sophisticated word embeddings [6]. Built on top of these

models, there is a plethora of applications designed in support of

diverse information retrieval (IR) tasks, such as search, query ex-

pansion, text summarization, or document classification, to name

but a few [28, 49]. A closer inspection of these IR tasks reveals the

central role of word dependency. That is, information about word

cooccurrences in textual documents is a key concept of models such

as latent semantic indexing, topic models, or word embeddings. As

a result, word cooccurrence statistics have been studied extensively

in the past [17, 44]. Although many such models were initially

based on the concept of words, they can also be considered on the

more general basis of terms, which include both individual words

and multi-word expressions such as named entities.

As is reflected in J.R. Firth’s well known quote “you shall know a
word by the company it keeps”, some of the most discriminative fea-

tures of a term are the other terms that occur in its proximity [18].

The use of company in his quote also expresses an aspect of connect-
edness and has a social connotation, which immediately suggests a

network of sorts. After all, a network (or, formally, a graph) is the

natural model of choice whenever a set of things is connected. It

thus comes as no surprise that this notion term context has led to

numerous approaches in which cooccurrence information is mod-

eled in the form of graphs [9, 10, 26]. In a similar vein, this thought

leads to the idea of heterogeneous information networks, which

employ knowledge bases to associate external information with

terms in documents [14, 31, 37, 40]. While such graph structures

naturally provide a topological embedding of terms or entities in a

textual context, the modeling of this context is constrained to pair-

wise relationships and term cooccurrences due to the limitations of

binary (or dyadic) edges in the employed graphs. It is well known

that such dyadic graph models suffer from several shortcomings in

modeling higher-order relationships with more than two partici-

pating terms or entities. As a result, such models tend to be tailored

to a specific task and are notoriously difficult to generalize.

To address these shortcomings of existing models, we propose a

document model that is based on the concept of hypergraphs [7, 8].
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In contrast to dyadic graphs, in which an edge always connects

exactly two nodes, hypergraphs allow the representation of higher-

order relationships as hyperedges that connect an arbitrary number

of nodes. Furthermore, we include not just terms as nodes, but also

structural components of the document, such as sentences, annota-

tions, and the document itself. Together with the linking of nodes to

entities of different classes in external knowledge bases, this leads

to the notion of a hypergraph over a heterogeneous set of nodes.

While this model for higher-order term cooccurrences is valuable in

itself, our primary contribution and key to the practical application

of the model is a core set of operators that support a variety of IR

tasks. In the spirit of the base operators of relational algebra [11], we

introduce a generalized set of operators on hypergraphs that allow

the selection and transformation of hyperedges to satisfy informa-

tion needs and retrieval operations with respect to the documents.

The operators are designed to seamlessly integrate structured data

from external knowledge bases into the unstructured text.

Contributions. In summary, we make five primary contributions

in an extension of a prior conceptual model [38]:

(i ) We propose a hypergraph-based document model for de-

scribing higher-order cooccurrences among a set of hetero-

geneous nodes that represent the documents’ components.

(ii ) The model is designed to represent text annotations together

with data from knowledge bases and thus bridges the gap

between structured and unstructured data.

(iii ) We propose fundamental operators on such heterogeneous

hypergraphs for filtering and selecting nodes and (subsets

of) hyperedges to support a wide range of applications.

(iv ) We show how the model can be used in combination with

the proposed operators to realize key tasks in IR.

(v ) We compare implementations of the system in a relational

database and a dedicated graph database with respect to their

memory consumption and query performance.

Structure of the paper. In Section 2, we review related work for

term cooccurrences and hypergraphs. In Section 3, we introduce

the hypergraph document model, and describe fundamental opera-

tions on such graphs in Section 4. In Section 5 we show how key

IR methods can be realized with our model. Section 6 compares

practical implementations with respect to their performance.

2 RELATEDWORK
We split the related work into two broader categories: (1) network-

based modeling of term cooccurrences and (2) hypergraphs.

2.1 Network-based Term Cooccurrences
Modeling and analyzing word cooccurrences has a long tradition

and was likely first considered formally by Van Rijsbergen, who

proposed to drop the term independence assumption and mea-

sure term dependencies with non-linear weighting functions [44].

Since then, a multitude of approaches have built on term cooccur-

rence information and statistics (for a comprehensive overview,

see [17]). Unsurprisingly, term cooccurrence information has ap-

plications in a variety of IR settings, including similarity measures

for words [12, 48], query expansion [2, 32], extracting keywords

from documents [27, 29], or constructing low-dimensional vector

embeddings from term cooccurrences [33].

Some recent works model term cooccurrences as networks to de-

scribe term relationships in a more context-oriented framework and

employ network analysis for the derivation of measures or to com-

pare language specific networks [9, 10, 22, 25, 26]. Others exploit

the properties of such networks to learn document representations

and context-dependent relationships through embeddings [43].

The above networks include words and terms without consid-

ering external information sources. More recently, typed cooccur-

rence networks have been introduced, which include cooccurrences

of named entities that are detected and extracted from the docu-

ments. Nodes still represent terms, but are also associated with

entity types, such as person or location. Examples of such networks

include the LOAD approach for cross-document extraction and

summarization of events [39, 40], entity graphs used for identifying

entities in trending events [36], and time-term association graphs

to estimate the focus time of documents [23].

While these works incorporate named entity recognition and

cooccurrence information, many other approaches additionally

harness structured knowledge bases such Wikidata [45], either to

construct networks directly, or to link extracted terms to entries

in the knowledge base. Examples include coreference resolution

of entity mentions [14], query feature expansion from links to

knowledge bases [13], and determining the semantic relatedness of

documents [31]. On this side of the spectrum of term networks, one

eventually encounters (heterogeneous) information networks [37].

Such networks, however, are focused less on term cooccurrences

and more on knowledge-base like relationships. General models

that fully merge structured knowledge and unstructured text data

independently of the application are still missing.

2.2 Hypergraphs
A major shortcoming of the above approaches to modeling term

relationships is the restriction to a dyadic graph model, which is

insufficient for modeling the joint cooccurrences of multiple terms.

To address these shortcomings, recent approaches increasingly

utilize hypergraphs. Hypergraphs have been studied extensively in

graph theory [7, 8], but have not seen frequent use in practice due

to their computational complexity and difficult realization based on

existing data management infrastructure. However, as is evident

from recent publications, hypergraph implementations scale well

on novel computing infrastructures. Heintz et al. discuss several

challenges and opportunities when realizing hypergraph manage-

ment systems [19] and present a flexible, distributed and scalable

processing system for hypergraphs called MESH [20]. Huang et al.

introduce the HyperX system, which supports efficient learning on

and processing of distributed hypergraphs in Spark [21].

Nowadays, one can find emerging approaches that successfully

employ hypergraphmodels for diverse graphmanagement and anal-

ysis tasks. On the one hand, some approaches extend traditional

network analysis tasks to hypergraphs, such as clustering coeffi-

cients [16], centrality measures [24], or spectral clustering [47].

On the other hand, hypergraph-based approaches have also found

use in traditional document-based IR settings, such as sentences

as hyperedges of words to enable random-walk based metrics for

sentence ranking [3, 4], or hyperedgs over the set of sentences

in a document for semi-supervised extractive summarization [46].
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Bendersky and Croft utilize hypergraphs to model queries (but not

documents) in a way that includes term and phrase dependencies

and improves subsequent retrieval operations [5]. Hypergraphs

have also been proposed as a basis for recommendation systems,

for example in tagging data [50] and music recommendation [42].

Almost all the above approaches come with their own special-

ized hypergraph model, ranging from a pure document-oriented

view to modeling complex relationships between terms or features

within the documents. Furthermore, none of these approaches uti-

lize hypergraphs for generalized term cooccurrences to support

other application frameworks. Given the plethora of information

retrieval and exploration approaches based on term cooccurrences,

it is pertinent to have a single yet flexible document model that

can support the majority of these applications. In the following, we

present such a document model based on hypergraphs, including

necessary operators to enable a wide range of applications.

3 HYPERGRAPH DOCUMENT MODEL
Before we introduce the hypergraph model, we define the underly-

ing concepts and discuss document segmentation strategies.

3.1 Preliminaries
A graph G = (V ,EG ) is a tuple consisting of a set of nodesV and

a set of edges EG . In most commonly used graphs, edges connect

exactly two nodes, whichmeans that EG ⊆ V×V . In the following,

we refer to such graphs as dyadic graphs. Dyadic graphs may be

weighted, meaning that a weight is associated with each edge, or

directed, meaning that the order of nodes in an edge is of relevance.

In contrast to dyadic graphs, edges in a hypergraph consist of an

arbitrary subset of nodes. Thus, for a hypergraphH = (V ,EH ),

the set of edges is a subset of the power set of nodes EH ⊆ 2
V
.

Such edges are called hyperedges, but we refer to them as edges

when the meaning is clear from context. Similar to edges in dyadic

graphs, hyperedges may be weighted or directed, but we focus on

unweighted, undirected hypergraphs in the following. A graph or

hypergraph is called heterogeneous if the set of nodes can be parti-

tioned according to some distinct attribute (consider, for example,

entities in a knowledge graph representing persons or places).

In the following, we discuss how to segment documents in such

a way that they can be represented as a type of heterogeneous

hypergraph. External knowledge such as node type hierarchies are

then easily included as dyadic graphs over the same set of nodes.

3.2 Document Segmentation
As unstructured text input, we consider a document collection D.

Each document D ∈ D may have associated metadata (e.g., an

author or a publication date), and can be segmented into smaller

units. Specifically, we use terms T as atomic units and sentences S

as groups of terms. Thus, we consider a document D ∈ D to be a

subset of sentences D ⊆ S. In turn, each sentence S ∈ S is a subset

of terms S ⊆ T . In the following, we consider a term to be a word

or a multi-word expression with a specific meaning in the given

sentence. For example, both apple and apple tree could constitute

terms, even though the latter consists of two words.

Note that additional granularity levels in this segmentation hi-

erarchy are possible. For example, phrases can serve as groups of

terms that are parts of sentences, paragraphs allow the modeling of

groups of sentences, whereas volumes could represent sets of docu-

ments within a collection. For the sake of brevity, we do not include

them here, but it should be obvious how they can be formalized as

a possible hierarchy of sentences, in analogy to the following.

3.3 External Term Augmentations
The segmentation of documents into terms instead of words is both

aided and required by the use of a model that transcends document

knowledge and integrates external structured information into the

unstructured text. To this end, we design the model to support the

augmentation of identified terms with external knowledge, such

as (named) entity information from knowledge bases. Since terms

constitute the majority of nodes of the hypergraph, knowledge

about terms can be modeled as node attributes, while ontological

or hierarchical information provides dyadic graphs over the set of

nodes. For example, the term apple can be tagged as part-of-speech

noun or, depending on the context in the sentence, could be linked

to an entity in a knowledge base representing the fruit or the tech-

nology company. Based on these links to knowledge bases, terms

can be classified into categories and hierarchies. For example, the

company Apple would be classified as an organization. Thus, addi-

tional term information constitutes attributes that are associated

with the corresponding nodes. Naturally, named entity recognition

and linking tools are a rich source of augmenting information.

Targets for entity linking could be gazetteers or knowledge bases

such as Wikidata [45]. On a linguistic level, it is also possible to link

terms based on lexical networks likeWordNet [30]. Ideally, it should

be possible to link any term to an underlying knowledge base or

lexical resource. In reality, since information is often missing or

incomplete, the resulting set of nodes is heterogeneous with regard

to the available information. For terms that cannot be linked, it is

reasonable to assume some form of lemmatization or stemming to

ensure that distinct terms and lexemes with identical meaning are

also mapped to the same node in the graph, similar to the linking of

entities. Alternatively, terms can be clustered and linked according

to (pre-trained) vector embeddings to represent dyadic semantic

relations that are present within the document collection or a refer-

ence corpus, for example by using GloVe [33] or ELMo [34]. While

the possibilities of linking terms to external sources are numerous,

the approach can always be modeled as (heterogeneous) nodes that

are linked to external dyadic graph structures for which numerous

querying and reasoning approaches exist. In the following, we thus

focus on representing the document collection itself. For this task,

we put a focus on term cooccurrences, which cannot be handled

adequately by dyadic approaches.

3.4 Hyperedge Composition
To introduce the construction principle of hyperedges, we first de-

fine the set of nodes and a system for describing term positions

within the sentence structure of the documents. Ultimately, we ob-

tain a hypergraphH = (V ,E). External knowledge base structures
can then be considered as dyadic graphs GKB = (V ,EKB ) on the

same set of nodes or a subset thereof.

3.4.1 Term and Sentence Position. To represent the occurrence

of terms in sentences as well as the cooccurrences of terms, we
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Figure 1: Left: document D with sentences R,S ,T and terms a − f , along with the resulting hyperedge eS for representing the
primary sentence S at a window size of w = 1. Right: example of a term occurrence t with attributes core t .c and position t .p,
as well as added part-of-speech and named entity annotations, and external Wikidata knowledge base attributes.

introduce the concept of relative term and sentence position as a

function p : (T ∪S)2 → Z. To this end, we assume that there exists

a monotonic, consecutive numbering of sentences such that each

sentence S has an identifier id (S ) ∈ N. For two sentences S1 and
S2, we define their relative position as p (S1,S2) := id (S2) − id (S1).
Analogously, we define positions for terms. For a given occurrence

of term t , let s (t ) ∈ S denote the containing sentence. For two

term occurrences t1 and t2 we then define their relative position as

p (t1,t2) := id (s (t1))−id (s (t2)). Note that positions may be negative,

that they are symmetric for inverse arguments, and that the absolute

value |p (t1,t2) | of a position score is a proper distance in the number

of sentences between the term occurrences. For ease of notation, we

also include a relative position between documents and sentences,

by setting the position of a document D with regard to a sentence

S to p (D,S ) := 0 iff S ∈ D and p (D,S ) := ∞ otherwise.

Since sentences represent coherent units of linguistic structure,

we consider the above position scheme on the sentence level to

be the most useful approach, and it is used in some of the typical

IR applications that we replicate in Section 5. Of course, position

functions based on paragraph or term distances are equally viable.

While a monotonic and consecutive numbering of sentences is not

strictly necessary, it is beneficial for materializing hyperedges from

the underlying data at query time, as we discuss in Section 6.

3.4.2 Graph NodesV . To construct the set of graph nodes, we de-

fine the setCore := T ∪S∪D of terms, sentences, and documents.

Based on unique identifiers for terms, sentences, and documents,

this allows us to identify individual nodes. To satisfy the require-

ment of modeling cooccurrences across sentence boundaries, we

include the position of the node core in the node representation.

Thus, the set of nodes is given byV ⊆ Core × Z. The first compo-

nent denotes the identifier, while the second denotes the relative

position with respect to the considered sentence.

3.4.3 Node Attributes. Each node as defined above is a tuple with

the two primary components core (the term, sentence, or document

identifier) and position (the relative position within the document).

In the following, we refer to the core of a node v ∈ V as v .c
and use v .p to denote the position. Note that the content of each

node is uniquely identified by the core component (i.e., the word or

sentence). In practice, this can be any unique identifier. For term-

and entity-centric analyses, terms can be mapped to additional

attributes that are stored in respective lookup tables (e.g., named

entity types). We represent these optional attributes with the same

component notation. An important attribute in this context is the

type of a node, denoted asv .type , which classifies it into a document,

sentence, or term. Other useful attributes include v .ne , the named

entity type of a term. For an example, see Figure 1 (right).

3.4.4 Node Equivalences. To compare graph nodes, we introduce

node equivalences. We say that two nodes v,w ∈ V are equal and

write v = w iff their two primary components are identical. That is,

v = w :⇔ v .c = w .c ∧v .p = w .p (1)

Intuitively, v and w are identical if they share both content and

relative position value. Since terms, sentences, and documents are

uniquely identified by the core c , we also consider approximate

equivalence ≈ if only the occurrence position deviates. Thus,

v ≈ w :⇔ v .c = w .c (2)

Further relations are viable, such as the less-than and more-than

relations ≤n and ≥n , in which the core is identical and nodes are

ordered by their position component. These can be used to induce

a partial order on the set of hyperedges, but are not required here.

3.4.5 Hyperedges E. Following the segmentation of documents,

we construct hyperedges to represent the document collection

around the cooccurrences of terms. Based on the set of nodesV of

the graph, we obtain the set of all possible hyperedges over these

nodes as Σ := 2
Core×Z

, i.e., all sets that can be constructed from

all possible nodes. From these, we can identify a subset E ⊆ Σ that

represents the input document collection and allows us to define a

hypergraphH = (V ,E), in which each edge e ∈ E is constructed

around a sentence Se in the document collection. We call Se the pri-
mary sentence of e . To model the content and context of sentences,

each edge is composed of nodes as defined above. Formally, each

edge constitutes a set e ⊂ V that contains the terms in and around

the primary sentence Se . Letw ∈ N denote the size of a suitable con-
text window, measured in sentences. Then e := Ve

T
∪Ve
S
∪{(De ,0)}

is a set of terms in Se and in nearby sentences along with their

relative positions, where De is the document that contains Se and

Ve
T

:= {(t ,p (t ,Se )) : t ∈ T ∧ |p (t ,Se ) | ≤ w } (3)

Ve
S
:= {(S ,p (S ,Se )) : S ∈ S ∧ |p (S ,Se ) | ≤ w } (4)

Intuitively, each sentence is represented by one hyperedge that

contains its contents as well as the contents of surrounding sen-

tences based on the window sizew . The parameterw is thus directly

related to the size of the context window around a sentence that

induces the term cooccurrences. In Section 6, we discuss the practi-

cal implications of this aspect for the storage size and show how

physical replication of the data can be avoided. For an overview of

the model, see Figure 1 (left). Since hyperedges constitute sets of

nodes, we write v ∈ e to denote that edge e is incident on node v .
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3.4.6 Edge Relations. In the following, we use relations between

hyperedges to simplify the derivation of cooccurrence relations and

statistics between terms. Most fundamentally, we define the notion

of edge equality based on set semantics. That is, two edges are

equal iff node equality as defined above is a bijection between the

two edges. Similarly, we say that edges e and f are approximately

equivalent and write e ≈ f iff a bijection between the two sets can

be defined on the basis of approximate node equivalence.

Finally, we say that edge e is contained in edge f and write e ⊑ f ,
if all nodes in e have an approximately equivalent node in f whose

absolute position is at most as large as in e . Formally, we have

e ⊑ f :⇔ ∀v ∈ e ∃v̂ ∈ f : (v ≈ v̂ ) ∧ ( |v̂ .p | ≤ |v .p |). (5)

We also refer to e as a subedge of f . Intuitively, this notion of edge

containment requires that all terms are at least as closely positioned

in the containing edge as they are in the subedge.

4 DOCUMENT HYPERGRAPH OPERATORS
Based on the hypergraph document model, we now introduce the

base operators that can be used to select and transform the hy-

peredge representations. We begin by discussing the notation of

propositional expressions as a basis for selection operations.

4.1 Propositional Expressions
In analogy to relational algebra, we rely on propositional expres-

sions for the selection of nodes from an edge or of edges from a set

of edges. Formally, a propositional expression (called expression in

the following) can be any syntactically adequate unary formula that

maps a node or edge to a truth value. With node attributes being the

most discriminative feature of hyperedges, most relevant expres-

sions rely directly on attribute values and are of the form v .att ϕ x ,
where att is some node attribute, x is a value from the domain

of this attribute (or a subset thereof), and ϕ ∈ {=,,,≤,≥,<,>,∈}.
In the following, we consider expressions θ that contain node at-

tributes to be true for an edge if the edge contains at least one node

for which the expression is true. That is, for an edge e ∈ E,

θ (e ) = true :⇔ ∃v ∈ e : θ (v ) = true (6)

To keep the notation concise, we use an abbreviated notation and

write θ (e ) instead of ∃v ∈ e : θ (v ) when using the expression.

4.1.1 Distance. As a special shorthand, we use the concept of dis-
tance d instead of position p where the sign of the position value

does not matter. Specifically, we define the distance as

d := |v .p | (7)

and use it in expressions of the form d ϕ k , where k ∈ R and ϕ is

some valid relation over the real numbers. The expression is true

if ϕ holds for d and k . Note that d may not always be a proper

distance metric since the identity of indiscernibles is violated when

sentence or paragraph distances are used.

4.1.2 Existence. Since nodes may or may not possess a certain

attribute due to heterogeneity, an important distinction criterion is

the existence of an attribute, regardless of the value. For example,

it may be relevant to distinguish between named entities and other

terms. Here, we simply denote with ∃v .att an expression that is

true if node v has attribute att and false if it does not.

4.2 Closed Operators on Hyperedges
We first introduce a number of operations that are closed on sets

of hyperedges, i.e., both the input and the output are sets of hyper-

edges. Since isolated nodes are edges with one element, all sets of

hyperedges can w.l.o.g. be considered to represent hypergraphs.

4.2.1 Set Operators. Three trivial binary operators are the asym-

metric set minus −, the union ∪, and the intersection ∩. They

conform to their usual semantics. However, note the difference

between set operations on two hyperedges (which merge sets of

nodes), and on sets of hyperedges (which merge entire graphs).

4.2.2 Selection σ . The selection is defined in analogy to the defini-

tion of a subhypergraph and equates to the selection of all hyper-

edges from an input set that satisfy some selection expression. For

example, a subset of hyperedges can be selected based on certain

nodes that these edges contain, or on attributes of those contained

nodes. Formally, for some expression θ , we define the selection

σθ : 2
Σ → 2

Σ
. Thus, for a set of input edges E ⊆ E, let

σθ (E) := {e ∈ E : θ (e )}. (8)

In terms of relational algebra, if we were to relate hyperedges to

tuples, then the selection of edges from a set of edges is semantically

similar to the selection of tuples from a table.

4.2.3 Projection π . The projection of hyperedges can be defined

in analogy to partial hypergraphs, which is to say it handles the re-

moval of nodes from hyperedges based on the provided expression.

That is, all nodes that do not satisfy a given condition are removed

from the input hyperedges. For example, all nodes of the sentence

type or all nodes with a given attribute in an external knowledge

base could be removed from the input edges. For the sake of no-

tation, we first define the projection for a single hyperedge and

then generalize. Formally, for some expression θ , we define the

projection πθ : Σ→ Σ. Thus, for a given input edge e ∈ E, let

πθ (e ) := {v ∈ e : θ (v )}. (9)

On this basis, for a set of edges E ⊆ E, we can define the more

general projection function πθ : 2
Σ → 2

Σ
as

πθ (E) := {πθ (e ) : e ∈ E}. (10)

In terms of relational algebra, if we were to relate nodes of hy-

peredges to attributes of a tuple in a table, then the projection is

defined similarly. However, note that edges do not necessarily need

to contain nodes with every attribute that occurs in θ .
For simplicity, we use three shorthand notations for frequently

used projections. Specifically, we use πterm , πsen , and πdoc to

project hyperedges to the most common structural components of

text by removing all nodes from all input edges that are not of the

the type term, sentence, or document, respectively.

4.2.4 Reduction r . An important aspect of a hypergraph model is

its capability to represent higher-order cooccurrences. However,

many existing models use dyadic graph representations, so the

inclusion of an operator that transforms hypergraphs into dyadic

graphs by creating dyadic edges between all nodes in a hyperedge is

required. Note that the resulting list of edges can still be represented

as a 2-uniform hypergraph (i.e., all edges have a cardinality of two).

We refer to this operation as reduction (sometimes also called a
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clique expansion in the literature), which we first define for a single

hyperedge e as a function r : Σ→ 2
Σ
such that

r (e ) := {{v,w } : v , w ∧v,w ∈ e}. (11)

Note that we specifically exclude self edges, which serve no purpose

in this context. Based on this, we then obtain a reduction function

r : 2Σ → 2
Σ
for sets of hyperedges E as

r (E) :=
⋃
e ∈E

r (e ). (12)

For simplicity, we use r, as shorthand notation for a reduction in

which edges in the resulting dyadic graph are discarded if they

connect nodes of the same type (term, sentence, or document).

Similarly, we use r= to denote a resulting dyadic graph in which

only edges between nodes of the same type are retained.

More generally, we may also consider an operator that extracts

k-uniform hyperedges as subsets of fixed size k . If we denote with

[A]k the set of all subsets of A of size k , then rk is defined as

rk (e ) := [e]k and rk (E) :=
⋃
e ∈E

rk (e ). (13)

The dyadic reduction is then a special case of rk for k = 2 and

we write r instead of r2 where it is clear from context. Similar to

the case above, we use rk, and rk= as shorthand for output graphs

in which all nodes of an edge are of different or identical type,

respectively. In Section 5, we give examples of applications in which

these hypergraph-to-hypergraph operators are of practical use.

Finally, we observe that lower-order edges in the resulting graphs

are not necessarily distinct. Due to set semantics, these duplicate

edges are lost after the reduction unless multi-sets are used. Alter-

natively, an aggregation weighting functionω can be used to assign

a weight to the resulting aggregated edges (which is, to the best

of our knowledge, how this is predominantly handled in practical

applications). As a simple example, the total number of all such

edges could be assigned as a weight, which surmounts to counting

the duplicates. In the dyadic case, edges between terms in the re-

sulting graph would be assigned their cooccurrence count. More

complex weight functions are of course possible. Formally, we as-

sume a function rm that behaves equivalently to r but uses multiset

semantics. For a multisetM of edges, let {{M }}e := {e ′ ∈ M : e ≈ e ′}
denote the subset of edges that are approximately equivalent to a

given edge e . We can then regard the reduction with an aggregation

weight function as a family of functions rω : Σ→ R such that

rω (E) := {(e,ω ({{rm (E)}}e )) : e ∈ rm (E)}. (14)

Thus, any conceivable function ω that takes a set of edges between

a fixed set of nodes and computes a weight for the aggregated edge

can be used in this context.

4.2.5 Join ▷◁. As a final operator, we introduce the join of hyper-

edges, which is inspired by the concept of the join in relational

algebra, but is semantically distinct. Unlike edges in a dyadic graph,

hyperedges can be extended to include additional nodes. Thus,

we consider the extension of edges with nodes from other edges

that overlap on some subset of nodes. In terms of a dyadic graph,

this translates to the construction of growing paths from starting

nodes, or to growing clusters. From a retrieval perspective, this

allows the (context-sensitive) expansion of relevant cooccurrences

Figure 2: Example join {e} ▷◁ { f ,д} on the subedge ε = {x ,z}.

around some set of terms. Conceptually, we distinguish between

joins around a specified subedge and joins around shared subedges.

The first case we consider is the join on a specified subedge ε ,
which we call the ε-join ▷◁ε . For two sets of hyperedges E,F ∈ E,
we extend each edge in E that contains the given subedge with each

edge in F that also contains the given subedge. Formally, we let

E ▷◁ε F := {e ∪ f : e ∈ E ∧ f ∈ F ∧ ε ⊑ e ∧ ε ⊑ f }. (15)

In an application scenario, this join allows, for example, the identi-

fication and exploration of common or distinct cooccurrences of

terms in the graph with a set of query terms.

Expanding on this specific join on fixed subedges, we define

the more general j-join ▷◁j , which joins all edges that contain any

shared subedge of size j or larger. Thus, for some j ≥ 1, let

E ▷◁j F :={e ∪ f : e ∈ E ∧ f ∈ F∧

(∃ε : |ε | ≥ j ∧ ε ⊑ e ∧ ε ⊑ f )}.
(16)

In contrast to the ε-join, the j-join does not expand all edges in a

common direction but rather expands each edge in all (possibly

distinct) suitable directions. Both joins rely on the relative position

and thus allow a restriction of cooccurrences to a desired proximity

level. For a schematic overview, see Figure 2.

Note that for hyperedges resulting from a join operation, posi-

tion values are not necessarily well defined. The edge join operation

is thus powerful but, similar to a join in relational algebra, not every

possible join result is semantically meaningful. In Section 5, we dis-

cuss how edge joins can be used for path and context explorations.

In addition to the two operators defined above, further joins such

as a general θ -join on arbitrary expressions are conceivable.

4.3 Closure under Operators
Most retrieval operations on the hypergraph structure require the

combination (or chaining) of multiple operators on the set of input

edges to obtain the desired result. Thus, it is important that the set

of possible sets of hyperedges 2
Σ
is closed under the operators as

introduced above. In the following, we briefly discuss and prove

this property for sets of hyperedges.

Lemma 4.1 (Closure under set operations). The set of possible
sets of hyperedges 2Σ is closed under the set operators set minus −,
union ∪, and intersection ∩.

Proof. Since power sets are closed under the basic set operators

and 2
Σ
is a power set, it follows that 2

Σ
must be closed under the

minus, union, and intersection operators. □

Lemma 4.2 (Closure under selection). The set of possible sets
of hyperedges 2Σ is closed under the selection operator σ .
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Proof. Given a subset of edges E ⊆ Σ and some expression θ ,
it must hold that σθ (E) ⊆ E and σθ (E) ⊆ Σ by transitivity of the

set containment. Therefore, the set of possible sets of hyperedges

is closed under selection. □

Lemma 4.3 (Closure under projection). The set of possible sets
of hyperedges 2Σ is closed under the projection operator π .

Proof. Given a subset of edges E ⊆ Σ and some expression θ ,
let πθ (E) denote the set of edges that is obtained by projecting

E according to expression θ . Then for all edges e ∈ πθ (E), there
exist an edge e ′ ∈ E such that e ⊆ e ′. Since e ′ ∈ Σ and Σ is also a

power set that is closed under the set minus operation, it must hold

that e ∈ Σ. Thus, πθ (E) ⊆ Σ, meaning that 2
Σ
is closed under the

projection operator. □

Lemma 4.4 (Closure under reduction). The set of possible sets
of hyperedges 2Σ is closed under the reduction operator r .

We observe that the reduction operator effectively creates the

set of all k-uniform subedges for each hyperedge in the input set.

Therefore, we omit the proof of closure since it is analogous to the

proof provided above for the projection operator.

Lemma 4.5 (Closure under join). The set of possible sets of
hyperedges 2Σ is closed under the join operators ▷◁ε and ▷◁j .

Proof. To show the closure of the join operation, we can con-

sider both the ε-join and the j-join simultaneously. W.l.o.g. let

f = {e1} ▷◁ {e2} denote the single hyperedge that results from

the join of edges e1 ∈ Σ and e2 ∈ Σ on some common subedge.

Then, f = e1 ∪ e2, from which directly follows that f ∈ Σ since Σ
is closed under union. Given that the above observation holds for

any two edges, it must also hold for the join F = E1 ▷◁ E2 of any
two sets of edges E1 ⊆ Σ and E2 ⊆ Σ that F ⊆ Σ. Thus, 2Σ is closed

under the join operator. □

4.4 Non-closed Operators
In addition to the five types of basic operations defined in the pre-

vious section, some applications may require additional operators

that map sets of hyperedges to scalar values instead of other sets of

hyperedges. A prominent example that we use in the following is

the counting operator that returns the number of edges in a graph.

Formally, we define it as a function count : 2Σ → N such that for

an edge set E ∈ 2Σ, we obtain count (E) := |E |. While the operator

is trivial, it also forms the basis for the large collection of statistical

methods that rely on counts of term cooccurrences.

5 HYPERGRAPH MODEL APPLICATIONS
The literature knows a multitude of methods that rely on the ex-

traction of term cooccurrences for tasks so diverse as exploratory

search, event detection, or summarization. To highlight the versatil-

ity of the hypergraph model, we show how the model can be used

to reproduce and support existing IR techniques for a number of

typical and essential applications. An exhaustive coverage of tech-

niques is beyond the scope of this (or any single) paper, so we focus

on a selection that employs diverse operators or reproduces well

known baselines. We show how the model emulates and supports

a wide range of approaches with the operators defined in Section 4.

5.1 Exploratory Search
We begin with a number of cooccurrence query operations that

serve as examples of initial investigations into a document collec-

tion. Based on a query term t , a basic search operation is realized

by the selection of terms that cooccur with the given term in a

window of size at most k , which we can represent as

Ecooc (t ,k ) := πv .c,t (πd≤k (σv .c=t (πterm (E)))) (17)

By adjusting the projections, we can also retrieve sentences or

documents as source information of the cooccurrence instances.

Going beyond single-term queries, if we are interested in sets T
of terms as query input, we can combine the above operations for

individual terms by intersection to obtain

Ecooc (T ,k ) :=
⋂
t ∈T
Ecooc (t ,k ). (18)

Similar to the case above, retrieving source information may sup-

port additional document or sentence retrieval tasks. For further

exploration or to obtain count statistics (e.g., for rankings), both of

the above results can also be reduced to a dyadic graph.

To exploremore complex cooccurrence patterns, joins are helpful.

Consider, for example, a query in which we aim to extract location

mentions (i.e., toponyms) at which a specified person is mentioned

together with groups of other persons (i.e., that person’s meeting

places). For a given term tp of named entity type person, and a

minimum group size j, we can formulate the operation as

E1 := σv .c=tp (πv .ne=per (E))

E2 := πv .ne ∈{per ,loc } (E)

Eplaces (tp , j ) := πv .ne=loc (E1 ▷◁j E2)

(19)

that returns all such place mentions. If we are instead interested in

places where a given person was mentioned with a specific group

of other persons, an ε-join could be used.

5.2 Vector Space Model
The vector space model is a classic representative of document mod-

els and is based on the bag-of-words representation for sentences,

which is easily emulated through hyperedges. Established methods

include numerous variations of tf-idf or the BM25 metric [35] that

are based on the term count statistics term frequency tf (the fre-

quency of a term in a document) and document frequency df (the

number of documents in which the term occurs) of documents or

sections of documents. The frequency of term t in document D can

be obtained from the hypergraph model as

tf (t ,D) := count (σv .c=t (πd=0 (σv .c=D (E)))) (20)

by counting the sentences in the document that contain the term.

Similarly, the document frequency is given by

df (t ) := count (πdoc (σv .c=t (E))). (21)

Note that these are the commonly used definitions. However, other

variations of these measures can be formulated analogously, which

shows that the proposed model includes these baselines. Obviously,

the computation of such metrics can be combined with subsequent

explorations within the same framework.
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5.3 Graph-based Summarization
Automatic text summarization is a large area of research in which

a multitude of methods employ dyadic graph representations of

the documents. Here, we consider LexRank [15] as a well known

example for such an approach. Common to the majority of sum-

marization methods is the representation of sentences as nodes

of a graph. Nodes are then connected by edges that encode some

form of sentence similarity. Subsequent steps extract representative

sentences from this graph, for example through centrality compu-

tations or random walks. Based on a hypergraph representation of

the input documents, a sentence graph Gsen can be generated as

Gsen := r=
(⋃

πd=0 (πsen (E))
)

(22)

such that a sentence similarity function sim : S×S → R allows the

derivation of sentence similarity from the context of a sentence S ,
i.e., πterm (πd=0 (σv .c=S (E))). Subsequent graph centrality compu-

tations can be performed directly on the reduced graph (e.g., based

on the vector space model in the case of LexRank).

More recent summarization approaches that rely directly on

a hypergraph representation of sentences [4] can be replicated

even more easily. In these cases, a projection πd=0 to the primary

sentence level along with a set union are sufficient to represent the

underlying data in the model of the summarization approach.

5.4 Event Extraction and Detection
Based on the definition of an event as something that happens at a
specific date and location and involves an actor [1], event extraction
is ultimately aimed at the efficient detection of actor-location-date

triples (or their subsets in the case of partial mentions), along with

a suitable context. Similarly, much of event detection is based on

tracking evolving statistics of entity or term cooccurrences, which

are easily extractable from the hypergraph model. For example,

extracting actor-location-date triples is equivalent to the reduction

of edges to a 3-uniform hypergraph inwhich edges constitute triples

of entity nodes with distinct type. Thus, for an occurrence context

window of size k , this extraction can be formulated as

Etr iples (k ) = r
3

, (σterm (πd≤k (πv .ne ∈{loc,per ,dat } (E)))). (23)

A weighting function can be used to extract counts or relevance

scores for the occurrences. For more involved approaches that

subsequently perform linguistic analyses on the sentence level, re-

trieving provenance information for the mentions then constitutes

an inclusion of sentence nodes with distance zero in the expression.

Thus, entity triples and occurrence statistics are easily extracted

and serve as seeds for any more specialized approach.

5.5 Query Hypergraph Support
Query hypergraphs were introduced by Bendersky and Croft to

model higher-order term dependencies in queries [5]. In principle,

they are based on the same intuition as our hypergraph document

representation, but are specifically limited to modeling only the

dependency of query terms (or more complex query concepts) as

hypergraphs, while the document representation itself is not con-

sidered. Naturally, a hypergraph formalization of the documents

directly enables the efficient processing of similarly structured hy-

pergraph queries and constitutes the logical next step. Specifically,

query hypergraphs as introduced by Bendersky and Croft model

hyperedges between terms and documents to facilitate document

ranking and retrieval. Thus, retrieving relevant edges from the docu-

ment collection is enabled implicitly by use of the edge containment

relation ⊑ in our model (see Section 3.4.6).

By modeling queries as a set of query concepts κ ∈ KQ
, query

hypergraphs are constructed from local edges and global edges. Lo-
cal edges have the formal structure el = {κ,D} and simply link

each concept to the document D. As the authors observe them-

selves, these edges are not hyperedges but dyadic edges and thus

structurally similar to traditional bag-of-word representations. As a

result, relevance computations can be processed on the hypergraph

document representation according to Equations 20 and 21, albeit

by using count statistics that are different from count where neces-
sary. In contrast, global edges link the entire set of query concepts

to the document and are formalized as eд = K
Q ∪ {D}. To retrieve

documents that are perfect matches, we can thus construct a global

query edge eq in our notation as eq := {(v,0) | v ∈ eд } and retrieve
the set of matching hyperedges Eдlobal (eq ) = {e ∈ E | e ⊑ eq }.
Obviously, deriving document rankings then also requires the re-

trieval of partial matches, a process which can be formalized based

on the hypergraph operators as

Eдlobal (K
Q ) = πv .c ∈KQ∨v .type=doc (σv .c ∈KQ (E)). (24)

Note that this formulation does not restrict the cooccurrences of

terms to the sentence level, since cross-sentence adjacencies are

required for proximity-structure query hyperedges [5]. Intuitively,

we are retrieving hyperedges from the hypergraph representation

that (partially) match the query hyperedges and then use them

for scoring. Adding further query restrictions such as maximum

cooccurrence windows through chained projection or selection

operations is then a trivial matter.

5.6 Implicit Entity Networks
Implicit entity networks have recently been proposed as flexible

data representations for diverse IR tasks related to entity cooccur-

rences. As an example of such a network we use the LOAD model

by Spitz and Gertz [39, 40] since it considers cooccurrences beyond

sentence boundaries. Obviously, networks based on term distances

are equally viable as discussed in Section 3.4. The implicit network

model is based on a dyadic entity graph for a context window size

of k sentences that can be represented in the hypergraph model as

GLOAD (k ) = rω,, (πd=0 (E) ∪ π0≤p≤k (π∃v .ne (E))). (25)

Note that we ignore negative positions to prevent counting cooc-

currences between sentences twice. The edge weights ω used in

LOAD are then recreated by using the aggregation function

ω (E) :=
∑

(v,w )∈E

exp(−|max{v .p −w .p} −min{v .p −w .p}|). (26)

The resulting dyadic graph is equivalent to the implicit network

and supports all extraction and ranking methods proposed for such

a network. Similar approaches that do not use edge weights but

rely on discrete edge attributes for the extraction of information

networks are equally viable, albeit longer in a formal representation.
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Figure 3: Conceptual representation of the schema in the PostgreSQL relationalmodel (left) and the graph schematics in Neo4j
(right). The data used in this example corresponds to the example document D with sentences S , T , and R in Figure 1.

6 IMPLEMENTATION AND EVALUATION
So far, we have given a description of the model and its operators,

and demonstrated its applicability to wide range of typical tasks in

IR, which puts a full evaluation of all aspects well outside the scope

of this paper. However, we provide two initial implementations of

the proposed model to investigate the impact of design decisions

on the performance of such a system and demonstrate its viability.

For our implementation of the model, three aspects are of pri-

mary concern, namely the choice of the underlying database sys-

tems, the degree to which hyperedges need to be materialized, and

the amount of cooccurrence information that is stored in the system.

In the following, we evaluate implementations of the model with

a focus on these three aspects of materialization, database system,

and data. We conduct all experiments on a commodity hardware

system, using an Intel Core i7-7700 CPU, 32 GB RAM, and a 1 TB

HDD. The code for our experiments is available online
1
.

6.1 Hyperedge Materialization
The efficient storage of dyadic graphs is already no simple task, and

arbitrary hypergraphs are justifiably known for inducing an even

more daunting complexity. However, in the case of our document

representation, hypergraphs primarily serve as a formalization of

the inherent structure of natural language, which puts bounds on

the size of hyperedges in practice. In particular, applications typi-

cally consider term cooccurrences within a fixed window, meaning

that the sequential structure of sentences within a document mat-

ters. This raises the question whether the hyperedges have to be

represented explicitly, or if they can be implicitly generated at query

time with limited overhead to the storage requirements.

6.1.1 Explicit representation. As the most direct approach, we con-

sider a naive baseline implementation in which all hyperedges are

precomputed and materialized in the database. While we expect

the replication of content across adjacent hyperedges to create a

significant increase in the amount of required storage space in com-

parison to storing only the documents, this approach may provide

solid query performance for smaller document collections or small

window sizes. We refer to this as the explicit representation.

6.1.2 Implicit representation. The replication of data that is stored

in the explicit representation scales linearly with the considered

window size for cooccurrences and is likely excessive for large

window sizes. However, recall that the replication of nodes in the

hyperedges of adjacent sentences is purely conceptual. In practice,

1
Code available at https://github.com/dennlinger/hypergraph-document-store

the sentences of the documents are likely stored sequentially or

within close proximity in memory. In contrast to the explicit storage

of hyperedges, we thus also consider an implicit representation in

which the hyperedges are generated from the stored sentences at

query time. While this avoids the storage overhead of explicitly

storing the edges, it may increase the processing time for queries.

6.1.3 Dyadic representation. Since many IR applications are graph-

based, we also consider a physical representation of the dyadic

graph structure of cooccurrences. This is conceptually similar to

using the reduction operator r on a hypergraph representation

(see Section 4), but obviously prohibits the application of the more

involved hyperedge join operators. However, it may be sufficient

for applications that only require a dyadic graph structure. Since

this model represents each hyperedge by |E | · ( |E | − 1)/2 dyadic
edges, the required storage space grows quadratically with the size

of hyperedges. We refer to this as the dyadic representation.

6.2 Database Systems
The design of the hypergraph operators and their applications in

Sections 4 and 5 indicate that a translation of the hypergraph into

a relational database is an intuitive modeling decision. Thus, we

implement the model in PostgreSQL as a representative of relational

database systems. On the other hand, since the model is inherently

graph-based, graph databases might potentially be considered as a

suitable alternative due to their native support of graphs and their

optimized performance for graph operations. As a representative

of graph databases, we use Neo4j. For an overview of the baseline

schema that we use to represent data in these systems, see Figure 3.

6.2.1 PostgreSQL. As relational database system, we use Post-

greSQL 11.1. Our baseline data model in the relational implementa-

tion represents the content of the document collection in four tables,

three of which store the hierarchical containment information of

documents, sentences, and terms, while the fourth contains the term
occurrence information. Additional tables serve to store the hyper-

edge information. For the explicit representation, we furthermore

store the respective hyperedge document, hyperedge sentences, and
hyperedge term occurrences. Each of these three tables contains the

edge identifier, as well as a unique identifier for each individual

occurrence (i.e., doc_id for documents, sen_id and pos within the

hyperedge for sentences, and term_id and pos for terms). The sepa-

ration of tables with respect to the hierarchical structure of the text

allows the efficient execution of type-projection queries (πterm ,

πsen , πdoc ), and minimizes the size of indices and intermediate

https://github.com/dennlinger/hypergraph-document-store
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table representations, while maintaining a homogeneous data defi-

nition. For the implicit representation, no additional tables are used

beyond the baseline since hyperedges are generated dynamically.

For the dyadic representation, the hyperedge term occurrence table
is replaced by a table for dyadic edges in which we store the edge_id
and the two incident nodes of the edge.

To boost query performance, we add primary key indices over

the ID columns of every table (for example, the primary key for sen-
tences consists of doc_id and sen_id). Secondary indices are available
for all term_id columns, including the hyperedge table. Aside from
regular B-trees, we use a general inverted index for the term_text.
Clustering of tuples for all tables is according to the primary key

index (alternatives did not improve query performance).

6.2.2 Neo4j. To implement the model, we use Neo4j Commu-

nity Edition 3.5.11, which is designed to natively handle graph

data, but does not include direct hypergraph support. Neverthe-

less, modeling in Neo4j still results in a very interpretable schema,

as shown in Figure 3 (right). We store the baseline data model in

separate node types that include unique identifiers and respective

meta-information, but split the containment relation into three

separate relationships term_in_sentence, sentence_in_document and
term_in_document. Hyperedges are modeled via node types, where

hyperedge-specific information (such as the relative position) is

modeled as a property of the edges between nodes of type hyper-
edge and nodes of type term or sentence. The dyadic representation
is modeled as a self-relation on term occurrences, which contains a

unique identifier (edge_id and pos) for each edge.

To ensure comparable performance to PostgreSQL, indices were

added to identifier columns across all node types (document, sen-
tence, term, hyperedge), and further on the term_text property. Ad-
ditional indices showed no improvement during evaluation.

6.2.3 Query Generation. In the following, we briefly introduce our

approach to translating the operators from Section 4 into actual

queries based on our implemented database schemas.

For PostgreSQL, the translation of hypergraph operators into

queries is trivial by design due to the semantic similarity between

the hypergraph model and relational algebra, which thus allows

for a seamless translation. To optimize the generated query plans,

we experimented with basic CTE fencing.

In contrast, the translation of hypergraph operations to queries

in Neo4j’s query language Cypher is less direct since it does not rely

on relational algebra. However, our model formalizations with an

explicit hyperedge node type allows us to express the set operators as
well as the atomic operationsσ and π in a singleMATCH expression,

which enables the easy generation of any general operator.

More complex queries arise only if intermediate hyperedge re-

sults need to be generated ad-hoc (e.g., in the implicit model), but

can be modeled within a single subquery in both implementations.

6.3 Data
As evaluation data, we utilize news articles as a typical use case of

entity-annotated Web documents. We use a set of English news ar-

ticles that are annotated for parts of speech and named entities [41].

Named entity mentions in the documents are disambiguated and

linked to Wikidata as an external knowledge base.
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Figure 4: Storage space requirements for all models in Post-
greSQL and Neo4j for varying sizes of the context windoww
(top), and for varying numbers of documents in the collec-
tion and a fixed size of the context windoww = 2 (bottom).

6.3.1 Full data set. The collection of news articles consists of

113,312 distinct documents containing 2,746,875 sentences. After

the removal of stopwords, there are 31,631,317 distinct occurrences

of 390,486 terms. Furthermore, there are 122,153 distinct named

entities that have 3,121,492 combined overall occurrences. In the

following, we refer to this as the full data set.

6.3.2 Entity subset. While many applications require the retention

of cooccurrence information for all terms, named entities are of

special interest in many IR applications, such as the extraction of

entity relations. Due to the sparsity of entity mentions, this subset

differs in not just its size but in structural properties (such as a

reduced size of hyperedges for constant window size). To assess the

performance for entity-centric tasks, we include a subset of the data

in which all non-entity terms are removed, and refer to it as the

entity data set. This shrinks the number of hyperedge-term tuples

by approximately 90%, but retains the relational data structure.

6.4 Evaluation: Storage Space Requirements
By combining the three degrees of freedom for implementing the

model discussed above, we obtain 12 possible model configurations

(explicit, implicit, dyadic) × (full data, entity data) × (PSQL, Neo4j) to
evaluate. Of these 12, two are redundant (the implicit representation

has a constant storage size that is identical for both data sets) and
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(a) Dyadic Entity (b) Explicit Entity (c) Implicit Entity (d) Explicit Full (e) Implicit Full
Figure 5: Query performance of all models for 2,000 randomly sampled entities in PostgreSQL (top row) and Neo4j (bottom
row). The evaluated window sizes are 20 ( ), 10 ( ), 5 ( ), 2 ( ), 1 ( ), and 0 ( ). Shaded areas represent 95% confidence bands.

two could not be implemented (the memory consumption of the

dyadic representations for the full data is prohibitive), which leaves

eight combinations to consider. Storage requirements in PostgreSQL

are measured as tables and corresponding indices. In Neo4j, we

report the size of the graph.db folder for the equivalent export.
In Figure 4 (top), we show the storage size requirements for

varying window sizesw (measured in sentences to either side of a

primary sentence), and the storage size over the number of stored

documents in Figure 4 (bottom). We were unable to obtain the

values for the explicit representation on the full data for window

sizes beyond w = 10 due to insufficient memory, indicating that

the explicit representation is only suitable for small window sizes.

The dyadic representation is capped at w = 10 for the same rea-

son, which is a strong indication that the storage efficiency of a

hypergraph representation is preferable over the dyadic format.

We find that the memory footprint of implicit models scales

best since they effectively ignore the window size and materialize

edges only at query time. The comparatively large storage size for

small windows is the result of a more expensive representation of

term occurrences in the schema. For explicitly stored hypergraphs,

all representations scale poorly with the window size due to the

increasingly large overlap of hyperedges. We observe that the in-

crease in memory consumption slows down for large window sizes

that exceed the overall size of shorter documents (forw = 20, the

context window is already larger than 85.6% of documents).

Surprisingly, the comparison between implementations in Post-

greSQL and Neo4j reveals that Neo4j is at a minor advantage. While

Neo4j has a slightly higher cost for representing nodes, it also en-

ables an overall cheaper implementation of edges and thus performs

comparatively better for larger window sizes in which nodes are

dominated by the entries for hyperedges. In PostgreSQL, the major

source of memory consumption is the creation of indices.

6.5 Evaluation: Query Performance
To provide a first impression of the differences in performance

between the different model configurations, we focus on the ex-

traction of term cooccurrences Ecooc as a core concept. Thus, our

evaluation metric differs from regular graph benchmarks in that

it is specific to the IR-related tasks that the hypergraph model is

designed to support. We generate a set of queries by randomly sam-

pling 2,000 entities from the set of term nodes, whose occurrence

counts range from 1 to 5,800 (we refer to this as the degree of the

entities). Due to the underlying Zipfian distribution of terms in doc-

uments, the majority of these entities have a relatively low degree.

To determine the query performance for each model and window

size, we record and average the query execution time for retrieving

all cooccurrences of a given query entity as returned by EXPLAIN
ANALYZE (Postgres) and PROFILE (Neo4j) over five iterations (after

an initial iteration for cache warmup to ensure a fair comparison).

In Figure 5, we show the query performance of all model constel-

lations over varying window sizes. In a comparison between Neo4j

and PostgreSQL, the latter has a better overall performance, while

the differences between the model implementations are consistent

across database systems. The dyadic representation in Neo4j suffers

from the extremely large edge tables for larger window sizes and no

longer benefits fully from caching effects, which is detrimental to its

performance. We observe a similar effect for larger window sizes in

the explicit representations. PostgreSQL alleviates this problem due

to its ability of caching only the corresponding index in memory,

which results in a better scaling performance for large hyperedges.

Most importantly, the implicit models offer a competitive run-

time even for large window sizes, and outperform the explicit rep-

resentation in Neo4j, even on the reduced entity dataset. For small

window sizes, the implicit models incur the expected overhead of

computing the hyperedges on the fly, but provide a surprisingly ef-

fective performance, especially if the enormous reduction in storage

space requirements is considered. For window sizes abovew = 2,

the implicit representation is always the superior choice, regard-

less of the database system, which affirms the primary motivation

behind the use of the hypergraph model over dyadic graphs.

7 SUMMARY AND CONCLUSION
In this paper, we introduced a hypergraph model for representing

and querying term cooccurrences in large document collections, not
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as a replacement or improvement for any single IR approach, but

rather as a versatile and unified framework that natively supports a

wide variety of tasks in text mining and information extraction. By

utilizing hyperedges as sets of heterogeneous term, sentence, and

document nodes, the graph enables the inclusion of external knowl-

edge bases and thus bridges the gap between structured information

and unstructured text data. To formalize queries to this model, we

introduced a set of edge operators that allow the representation

of numerous fundamental information retrieval methods in one

universal notation. Based on these operators, we discussed a range

of example applications in which they enable the retrieval and ex-

traction of information from the underlying document collection

both through exploratory search and established IR approaches.

Our empirical evaluation of the hypergraph model shows that

it is not only competitive with existing dyadic graph represen-

tations, but that it is preferable due to its reduced storage space

requirements and better query performance for longer cooccurence

distances. While the implicit representation of hyperedges is simul-

taneously efficient in terms of memory usage and query speed, it

is also more versatile in its support of downstream applications.

Thus, our findings indicate that it is entirely possible to benefit

from the expressiveness of formally modeling term cooccurrences

in large document collections as overlapping hyperedges, without

the drawback of having to physically replicate the data.

Ongoing work. The natural next step is a native implementation

of the hypergraph model in a suitable database system with full

support for all operators in lieu of relying on high-level queries.
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