UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT 1386

Entity-centric Topic Extraction and Exploration:

A Network-based Approach

Andreas Spitz and Michael Gertz
March 27,2018 — ECIR 2018, Grenoble

Heidelberg University, Germany
Database Systems Research Group



A Topic From Recent News
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Disadvantages of Traditional (LDA) Topics

Substantial runtime requirements that increase

» with the number of documents

> with the number of topics

Limited flexibility when

» changing the number of topics

> updating the underlying data / processing data streams

Limited support for explorations of

> topic labels / topic descriptions

> relations between topics
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Implicit Entity Networks
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Extracting Implicit Networks From Text
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Network Topic Construction



Parallel Edge Aggregation And Ranking
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D(e): documents in which edge e occurs
e T(e): publication timestamps of documents D(e)
A(e): sentence distances between the nodes vl and v2

c(e): total number of occurrences of edge e



Topic Extraction and Triangular Growth
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Topic Growth by External Nodes

external
growth

For a demonstration of entity ranking in implicit networks see:
A. Spitz, S. Almasian, and M. Gertz. “EVELIN: Exploration of Event and Entity Links in Implicit
Networks”. In: WWW Companion. 2017. UrRL: http://evelin.ifi.uni-heidelberg.de
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Topic Exploration
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Overview: News Article Data

English news articles from RSS feeds:
> 14 news outlets (from US, UK, and AU)
» 6 months (Jun 1- Nov 30, 2016)
> 127.5 thousand articles

» 5.4 million sentences

The resulting implicit network has
» 119.3 thousand entities @
> 329.0 thousand terms ©

> 10.6 million edges

NLP processing pipeline:

> Part-of-speech and sentence tagging:
Stanford POS tagger

> Entity classification:
YAGO classes (LOC, ORG, PER)

» Named entity recognition and linking;:

/A NVBIVERSE
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Network Topic Example

Network news topics from CNN
June - July 2016

bangladeshi United Kingdom . Syria
Bangladesh territori group

O
feferendum Iraq coalit

European Union  Brazil

zika
olymp
presidenti game
Hillary Clinton
nomine | Rio de Janeiro )
T~ turkish
Turkey

attempt attack

Istanbul

]
convent .presumpt coup

Republican Party Recep Tayyip Erdogan



Network Topic Evolution

Network news topics from CNN (2016)
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Topics Across Different News Outlets

Network news topics from June - July 2016
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Comparison to Classic Topics




Term Ranking in Network Topics
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Term Ranking in Network Topics
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Classic Topics From Network Topics

Beirut - Lebanon

Russia - Moscow

Russia - Putin

Trump - Obama

Q3820 - Q822 Q159 - Q649 Q159 - Q7747 Q22686 - Q76
term score term score term score term score
syrian 0.14 russian 0.28 russian  0.29 presid 0.40
rebel-held  0.12 soviet 0.06 presid 0.18 american 0.21
rebel 0.06 nato 0.06 annex 0.09 republican  0.19
cease-fir 0.05 diplomat  0.06 nato 0.08 democrat 0.19
bombard 0.05 syrian 0.06 hack 0.08 campaign 0.18
bomb 0.04 rebel 0.05 west 0.08 administr 0.17

Network news topics from the New York Times (Jun - Nov 2016)
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Topic Overlap Comparison
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Discussion & Summary




Benefits of Entity-centric Network Topics

Benefits vs. traditional topics:
> faster extraction than LDA topics
> runtime contained in data preparation

> number of topics is flexible
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Benefits of Entity-centric Network Topics

Benefits vs. traditional topics: Stream compatibility:
> faster extraction than LDA topics > document updates require only
> runtime contained in data preparation (sub-) graph updates

> number of topics is flexible
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Flexibility of Entity-centric Network Topics

Intuitive exploration of topics:
» network visualizations instead of term lists

> entities act as labels for topics
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Flexibility of Entity-centric Network Topics

Intuitive exploration of topics:
» network visualizations instead of term lists

> entities act as labels for topics

Efficient support of interactive explorations:
> Adding more topic seeds (edges):
O(log n) for edge lookup with index support

» Adding more descriptive terms:
O((k)) for average node degree (k)
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© presidenti
clect & ® campaign
presid @ Donald Trump

O president-elect

United States

18



Summary

Data and implementation are available online:
> [data] Implicit news network

> [code] Implicit network extraction

> [code] Topic exploration and extraction

https://dbs.ifi.uni-heidelberg.de/resources/nwtopics/
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