Online DATEing: A Web Interface for Temporal Annotations

Dennis Aumiller*
Institute of Computer Science, Heidelberg University
Heidelberg, Germany
aumiller@informatik.uni-heidelberg.de

Satya Almasian*
Institute of Computer Science, Heidelberg University
Heidelberg, Germany
almasian@informatik.uni-heidelberg.de

David Pohl
Institute of Computer Science, Heidelberg University
Heidelberg, Germany
pohl6@stud.uni-heidelberg.de

Michael Gertz
Institute of Computer Science, Heidelberg University
Heidelberg, Germany
gertz@informatik.uni-heidelberg.de

ABSTRACT
Despite more than two decades of research on temporal tagging and temporal relation extraction, usable tools for annotating text remain very basic and hard to set up from an average end-user perspective, limiting the applicability of developments to a selected group of investigated researchers. In this work, we aim to increase the accessibility of temporal tagging systems by presenting an intuitive web interface, called “Online DATEing”, which simplifies the interaction with existing temporal annotation frameworks. Our system integrates several approaches in a single interface and streamlines the process of importing (and tagging) groups of documents, as well as making it accessible through a programmatic API. It further enables users to interactively investigate and visualize tagged texts, and is designed with an extensible API for the inclusion of new models or data formats. A web demonstration of our tool is available at https://onlinedating.ifi.uni-heidelberg.de and public code accessible at https://github.com/satya77/Temporal_Tagger_Service.

CCS CONCEPTS
• Information systems → Information extraction; Extensible Markup Language (XML); • Human-centered computing → Information visualization.

KEYWORDS
Temporal Tagging, Information Extraction, System Demonstration

ACM Reference Format:

1 INTRODUCTION
Temporal information plays an important role in the field of Information Retrieval [3], by offering an additional relevance dimension.

*These authors contributed equally to this work

More recently, domain-specific applications have been investigated in narrative-centric task setups to assist with the creation of temporally informed representations of event timelines. Examples are the Text2Story workshop series [6] and the Financial Narrative Shared Task series [10].

In general, since the first developments in the area of temporal information extraction [22–24], the field has come a long way: several tried-and-tested datasets exist for the development of temporal taggers in multiple languages [19, 27, 28], and tagging performance on English data is getting close to the limit [9]. Yet, despite these developments, obtaining temporal annotations as an end-user remains a hassle: the few methods that do ship working implementations require manual installation, including specific setups of the runtime environment. Even then, specifications for parameters are not always intuitive to a user, or even properly documented. More often than not, one is only able to find implementations with outdated software from several years ago, or no code at all. Very few of the evaluated system are accompanied by any form of intuitive interface, of which none allows tagging more than a single document at a time. Furthermore, comparison of annotations between different methods remains cumbersome, and any form of inspection of tagging results is obscured due to the generally assumed output format in XML-like documents.

To address usability aspects for temporal tagging, in this work, we contribute:

1. a unification of several tagging tools in a single user-friendly web service including batch processing,
2. a visualization web interface for the comparison of different models on the fly,
3. a streamlined tagging API to enable users to alternatively access methods programmatically to obtain data,
4. the public code release1, including detailed installation instructions for running several tools in the same environment, and instructions for an easy addition of new models.

We initially cover a range of models from rule-based systems to neural architectures for multiple languages, which demonstrate the integration of various input requirements and architecture-specific parameters into a single easy-to-use and intuitive API.

The remainder of this work is structured as follows: We briefly discuss the landscape of tools for temporal tagging, followed by a description of the available tagging models used in this work. Afterwards, we go over the system architecture. Lastly, we demonstrate

1https://github.com/satya77/Temporal_Tagger_Service
We primarily limit the scope of related works to tools focusing on without any further distinction between expression types. One with a brief summary and an outlook on future extensions.

Time [26] and SUTime [8]; while their performance is not nec-

essarily state-of-the-art anymore, they remain the most frequent models. Further packages with publicly available code exist, but with some shortcoming: Syntime [31] and TOMN [30] provide uncompiled Java packages, UWTime [16] lacks continued support and does not run with Java 7 or newer. Python packages generally lack continued development and thus compatibility with Python3. Examples are ManTIME [11], TERNIP4 and TExer [13]. SpaCy5 is probably one of the most prominent packages used nowadays, and their English models are able to tag temporal expressions in English, although without any further distinction between expression types. One extension to a more compatible TIMEX-based tagging is Timexy6, although there is no known performance evaluation of this package on existing datasets.

More recently, Transformer-based tagging models have been introduced [1, 2, 9, 15, 25]; publicly available models (e.g., from [1, 2]) can be used through the Huggingface transformers library, but do not directly output TimeML-compatible annotations [21].

Figure 1: System architecture. Users can either interact with our system through the provided interface, or access it directly via a programmatic API. The backend binds to a diverse set of models.

intended workflows and demonstration scenarios, and conclude with a brief summary and an outlook on future extensions.

2 RELATED WORK

We primarily limit the scope of related works to tools focusing on the extraction (and normalization) of temporal expressions. For a more comprehensive overview of the field and its challenges, we refer the reader to the more extensive works by Campos et al. [5] and Nagahuna et al. [14].

Most promingly in the space of temporal tagging are Heidel-

Time [26] and SUTime [8]; while their performance is not necessarily state-of-the-art anymore, they remain the most frequent choices as baselines due to their relatively mature Java packages and comparatively easy integration into existing pipelines. Both also have available (and relatively recent) Python bindings.7,8 Further packages with publicly available code exist, but with some shortcoming: Syntime [31] and TOMN [30] provide uncompiled Java packages, UWTime [16] lacks continued support and does not run with Java 7 or newer. Python packages generally lack continued development and thus compatibility with Python3. Examples are ManTIME [11], TERNIP4 and TExer [13]. SpaCy5 is probably one of the most prominent packages used nowadays, and their English models are able to tag temporal expressions in English, although without any further distinction between expression types. One extension to a more compatible TIMEX-based tagging is Timexy6, although there is no known performance evaluation of this package on existing datasets.

More recently, Transformer-based tagging models have been introduced [1, 2, 9, 15, 25]; publicly available models (e.g., from [1, 2]) can be used through the Huggingface transformers library, but do not directly output TimeML-compatible annotations [21].

Rudimentary web interfaces for extracting temporal annotations exist to our knowledge only for HeidelTime and SUTime.7,8 While SUTime allows for slightly more flexible tagging options, HeidelTime’s demo is the only one to directly export annotated XML. Even then, HeidelTime’s demo has no option to extract text from batches of documents. Further, none of their APIs allow for a simple visual comparison of tagging results. This is crucial, because it would give users the ability to quickly judge the appropriateness of competing annotation methods, and compare their respective results without having to manually align the hard-to-interpret XML outputs or run through several different interfaces.

3 SYSTEM IMPLEMENTATION

We briefly introduce the general setting for temporal tagging and outline the various models. For the description of our system implementation, we elaborate on the system implementation, we elaborate on the backend API server and its separate visual web interface. A conceptual view of the architecture and the interactions can be seen in Figure 1.

3.1 Models

Temporal tagging is the task of identification, classification, and optionally normalization of temporal information in a text. Multiple schemas for temporal tagging have been proposed, but the most prominent one is TIMEX3, which follows the XML schema defined by the TimeML standard [21]. As an example, the sentence “Yesterday I went to the cinema” could be tagged as "<TIMEX3 type="DATE">Yesterday</TIMEX3> I went to the cinema". TIMEX3 tags can optionally contain a normalized representation of the date (e.g., “2022-02-20” instead of “yesterday”), where a reference date of the text is required to find an appropriate normalization. The type attribute represents the four available TIMEX3 classes. These are DATE (e.g., “28th March, 1982”), SET (recurring times, e.g., “every Monday”), DURATION (time intervals, e.g., “for two hours”), TIME (a more specific point in time, e.g., “tomorrow at 2pm”). Despite its widespread use, an XML file with TIMEX3 annotations is not intuitive to read and interpret for a non-expert user. Therefore, in the demo, we convert the tags to a span-based highlighting for visual inspections and use TIMEX3 only when exporting annotations. For this demo, we include the prominent tagging tools with working Python implementations, namely HeidelTime [26] and SUTime [8] as well as Transformer-based tagging models from previous work [1, 2]. In the following, we briefly describe each model.

3.1.1 Transformer Models. Identification of temporal expressions and assigning TIMEX3 types can be formalized as a token classification task, where the class label of each token indicates the TIMEX3 type of the temporal expression. In our case, Transformer models are fine-tuned language models for token classification of temporal tags. However, due to the data availability, these models can only be made available for a subset of languages. For English, we include three different taggers from Almasian et al. [1]:

(1) Classifier: A BERT-based token classifier, which predicts the probability distribution over the four TIMEX3 classes (see above) for each token.

https://github.com/PhilipEHauser/python_heideltime, last accessed: 2022-02-15
https://github.com/FraBlle/python-sutime, last accessed: 2022-02-15
https://github.com/cnorthwood/ternip, last accessed: 2022-02-17
https://spacy.io/, last accessed: 2022-02-17
https://github.com/PhilipEHausner/python_heideltime, last accessed: 2022-02-15
Figure 2: Document overview page (top) and editor view (bottom). The document view serves as the landing page of the web interface. It allows for (batch) upload of documents and processing with specified parameters. In the editor view, tagging results of specific documents can be inspected, including alignment and highlighting of extracted temporal expressions. This includes color-coded distinction of different classes as well as the additional display of normalized values.

(2) **Classifier CRF**: Similar to Classifier, but with an additional CRF layer instead of the linear layer, to account for the impact of neighboring tagging decisions on the current class label.

(3) **Classifier DATE**: A custom BERT tagging model with an additional reference date embedding layer.

For German, we include a single model with the same architecture as the previously mentioned Classifier variant, based on the model presented by Almasian et al. [2]: this model has been additionally pre-trained on weakly labeled data and fine-tuned from a pre-trained checkpoint of GELECTRA-large [7]. The classification head again outputs class probabilities for each token type class, similar to the English Classifier.

As a caveat, token classification models only perform identification and classification of tags and are incapable of value normalization. To our knowledge, no further neural models supporting different languages exist with publicly available checkpoints, although multilingual approaches have been evaluated in the literature before [15, 25].

3.1.2 **HeidelTime**. A rule-based temporal tagger that uses temporal expression patterns, knowledge resources, and linguistic clues. HeidelTime both classifies and normalizes tags and is available in multiple languages. In this work, we include all languages with an explicit rule set, but do not consider the automatically translated rules. Users can further choose between different domain-specific rule sets (“news”, “scientific”, “narrative” or “colloquial”).

3.1.3 **SUTime**. SUTime is another rule-based temporal tagger built on regular expression patterns, which integrates into the CoreNLP pipeline. Compared to HeidelTime, SUTime only covers American and British English, as well as Spanish.

3.1.4 **Timexy**. As a final component, we utilize this spaCy-based extension, which currently supports three different languages (English, German and French). Timexy also uses a rule-based pattern detection algorithm, similar to HeidelTime and SUTime. Due to its direct integration with Python, and lightweight ruleset, this method is comparably faster than other currently supported approaches.

3.2 **Backend**

The backbone of our API service consists of a simple routing server implemented with Flask-RESTful\(^9\) in Python. Since HeidelTime and SUTime are both implemented in Java, we utilize their respective Python wrappers to process documents. This adds process-related overhead to each document call, however, the respective rule-based approaches are otherwise fairly quick in their annotation. In contrast, Transformer models are called

\(^9\)version 0.3.9
directly through Huggingface’s transformers library [29]. Due to the size of neural architectures, annotating texts with such models is therefore mainly limited by the available CPU (or GPU) compute power. New models can easily be added by providing a wrapper around a function call to the new library, which correctly passes the input text and optional parameters down to any new service, as long as they can be called from within Python. Direct POST requests to the API similarly need to contain a payload consisting of the respective input text, model type, and optional document reference date. To accelerate the processing of neural models, our backend server is running on a machine with an Nvidia Titan RTX GPU. We further ensure that text segments are properly split for Transformer models to not exceed their maximum token lengths.

3.3 Web Interface

The web application is served via another Flask Python web server, and the interface is implemented in HTML and JavaScript. The interface accepts user input in the form of raw text files, or pasted text in the editor view, and passes model parameters and the request payload to the backend with AJAX. The application connects to the API with a POST request to return the tagged input. The Bootstrap dashboard from Core UI and Jinja2 web template enables the interactive layout. For the web interface, we further distinguish between the following two web views:

3.3.1 Document View. The document view, displayed in Figure 2a, serves as the entry point for the web service. It provides a dashboard in which users can manage one or multiple files to be annotated, including an overview of already uploaded documents. Further, users may (un)select specific elements for batch processing jobs, using the selection check box on the left-hand side. Documents can be opened in a separate view for inspection or removed from the list completely, using the respective buttons in the "OPERATION" column. We allow for multiple ways to add a new document, either by creating one from scratch or uploading from existing local files. The ‘CREATE’ button generates a new empty document, which can be filled with content by opening it in the editor’s view. Existing documents can be added with the ‘UPLOAD’ button, which opens a separate context window where users can select one or multiple files for processing. Our interface accepts plain text files and XML documents containing a <TEXT> tag as input, which is the standardized representation of existing temporal tagging corpora. For demonstration, we have also included sample documents taken from the TempEval-3 dataset [28] for English and KRAUTS [27] for German samples. A random sample document can be generated by clicking on the “EXAMPLE” button. Depending on user preferences, the interface allows for the selection of available models (cf. Section 3.1), through the model dropdown list, as well as setting the document language. When selecting a model, users are then also able to select model-specific parameters. For example, several methods also support the specification of a ‘reference date’, which will then be used as the anchor point in the normalization step of relative temporal expressions. If needed, users can specify the document creation time of each input separately. In addition to the model specifications, users may select one or more of the four available TIMEX3 annotation classes, by enabling or disabling temporal type filters, which will limit the tagging process accordingly.

In the document view, clicking on the ‘EXPORT’ button will trigger a batch processing job with the specified parameters of all selected documents at the same time, returned as a downloadable zip folder.

3.3.2 Editor View. Upon clicking the ‘OPEN’ button on the document view, users may enter the Editor view (cf. Figure 2b). This view allows users to edit the text of a particular document. In addition, it further allows them to investigate and compare tagging results of an individual document, by previewing the extracted tags given a particular parameter choice. The model choice and type filtering is presented in a similar fashion to the processing in the document view. This time the type filtering section also displays the total count of each type found in the document. Each tagging result will be displayed within the text area, by underlining the temporal expression, color-coded based on the specified type colors on temporal type filters. The column on the right side of the editor contains the aggregation of all expressions. Normalized versions of the temporal expression are given if the underlying annotation model supports such a step, and subsequently requires a valid document reference date. By hovering over a particular result in either pane, the associated expression will be highlighted visually to ease the alignment of tagged texts and normalized values. To try out different models, the user can click on the “RESET” button and choose a new method from the dropdown menu. To export a single document in the editor view, users may click on the “EXPORT” button.

4 SYSTEM DEMONSTRATION

We describe different user workflows that can be executed with the current capabilities of our interface. In general, for all of these scenarios, one of the main advantages remains the ability to run several different methods out-of-the-box, without having to worry about individual installations.

4.1 Comparison of Tagging Results

A critical lack of functionality in previous interfaces is the inability to compare different models, due to the lack of integration of multiple annotation tools under a single interface. Since models have been generally tailored towards (or trained on) specific domains of texts, the quality of annotations can severely differ based on the input, which makes an appropriate model choice even more important. After uploading the documents to be processed, users may inspect the annotation quality of individual samples in the editor view, where they can iterate through available methods and compare the annotation results and their respective quality. The comparison is possible by re-computing tagging results on a text, or opening multiple different instances of the annotation interface. This use case is also helpful to understand the particularities of different model-specific parameters at a glance and to make task-appropriate choices during initial data exploration.
4.2 Batch Processing of Document Collections

A relatively straightforward application is the processing of several texts at once, to quickly obtain annotations for a collection of documents. For this purpose, users can utilize the option to upload folders of documents via the document view; which is also not available in previous interfaces or would require a hand-written script for any existing software tooling.

It is both possible to provide a singular setting for all documents and process the mat once, or process select groups of documents with distinct parameter choices. This can be done by selecting the appropriate file groups in the overview menu and running with the preferred model parameters.

4.3 API Processing

In particular, due to our API design, the tool also allows for programmatic access to the annotation service. This may be desirable for several reasons:

(1) Programmatic accesses can avoid manual interaction with the web interface, eliminating user interactions, especially when dealing with a large number of documents.

(2) Users can define their own API endpoints based on custom model configurations, by extending the publicly available source. This is critical to support models with slightly different input/output specifications, e.g., due to additional parameters.

(3) Depending on the available hardware, it is possible to run the API server on a different machine, allowing multiple users to access a centrally set-up tagging interface, requiring less manual oversight over local installations.

5 CONCLUSION AND ONGOING WORK

In this work, an extensible and unified web interface for temporal tagging was presented, combining several existing annotation frameworks in a single API. We streamline the processing of groups of documents and allow users to compare tagging results of different extraction approaches.

As future extensions, the editor view lends itself for semi-automatic annotation tasks, where user feedback could be taken into account and models could be subsequently re-trained with feedback. For extensions of the API itself, aside from further model inclusions, we currently only support TIMEX3-compatible XML outputs; extension schemes such as SCATE [4] would be a sensible addition. Alternative options include, for example, support for temporal reasoning [17] or event relation extraction [12, 18, 20], which are more complex to annotate and visualize.

REFERENCES

