
Online DATEing: A Web Interface for Temporal Annotations
Dennis Aumiller∗

Institute of Computer Science, Heidelberg University
Heidelberg, Germany

aumiller@informatik.uni-heidelberg.de

Satya Almasian∗
Institute of Computer Science, Heidelberg University

Heidelberg, Germany
almasian@informatik.uni-heidelberg.de

David Pohl
Institute of Computer Science, Heidelberg University

Heidelberg, Germany
pohl6@stud.uni-heidelberg.de

Michael Gertz
Institute of Computer Science, Heidelberg University

Heidelberg, Germany
gertz@informatik.uni-heidelberg.de

ABSTRACT
Despite more than two decades of research on temporal tagging
and temporal relation extraction, usable tools for annotating text
remain very basic and hard to set up from an average end-user
perspective, limiting the applicability of developments to a selected
group of invested researchers. In this work, we aim to increase the
accessibility of temporal tagging systems by presenting an intuitive
web interface, called "Online DATEing", which simplifies the inter-
action with existing temporal annotation frameworks. Our system
integrates several approaches in a single interface and streamlines
the process of importing (and tagging) groups of documents, as
well as making it accessible through a programmatic API. It further
enables users to interactively investigate and visualize tagged texts,
and is designed with an extensible API for the inclusion of new
models or data formats. A web demonstration of our tool is avail-
able at https://onlinedating.ifi.uni-heidelberg.de and public code
accessible at https://github.com/satya77/Temporal_Tagger_Service.

CCS CONCEPTS
• Information systems → Information extraction; Extensible
Markup Language (XML); • Human-centered computing → In-
formation visualization.

KEYWORDS
Temporal Tagging, Information Extraction, System Demonstration
ACM Reference Format:
Dennis Aumiller, Satya Almasian, David Pohl, and Michael Gertz. 2022.
Online DATEing: A Web Interface for Temporal Annotations. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3477495.3531670

1 INTRODUCTION
Temporal information plays an important role in the field of Infor-
mation Retrieval [3], by offering an additional relevance dimension.

∗These authors contributed equally to this work

SIGIR ’22, July 11–15, 2022, Madrid, Spain
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
45th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’22), July 11–15, 2022, Madrid, Spain, https://doi.org/10.1145/3477495.
3531670.

More recently, domain-specific applications have been investigated
in narrative-centric task setups to assist with the creation of tempo-
rally informed representations of event timelines. Examples are the
Text2Story workshop series [6] and the Financial Narrative Shared
Task series [10].
In general, since the first developments in the area of temporal in-
formation extraction [22–24], the field has come a long way: several
tried-and-tested datasets exist for the development of temporal tag-
gers in multiple languages [19, 27, 28], and tagging performance on
English data is getting close to the limit [9]. Yet, despite these devel-
opments, obtaining temporal annotations as an end-user remains
a hassle: the few methods that do ship working implementations
require manual installation, including specific setups of the runtime
environment. Even then, specifications for parameters are not al-
ways intuitive to a user, or even properly documented. More often
than not, one is only able to find implementations with outdated
software from several years ago, or no code at all. Very few of the
evaluated system are accompanied by any form of intuitive inter-
face, of which none allows tagging more than a single document
at a time. Furthermore, comparison of annotations between differ-
ent methods remains cumbersome, and any form of inspection of
tagging results is obscured due to the generally assumed output
format in XML-like documents.
To address usability aspects for temporal tagging, in this work, we
contribute:

(1) a unification of several tagging tools in a single user-friendly
web service including batch processing,

(2) a visualization web interface for the comparison of different
models on the fly,

(3) a streamlined tagging API to enable users to alternatively
access methods programmatically to obtain data,

(4) the public code release1, including detailed installation in-
structions for running several tools in the same environment,
and instructions for an easy addition of new models.

We initially cover a range of models from rule-based systems to
neural architectures for multiple languages, which demonstrate the
integration of various input requirements and architecture-specific
parameters into a single easy-to-use and intuitive API.
The remainder of this work is structured as follows: We briefly
discuss the landscape of tools for temporal tagging, followed by a
description of the available tagging models used in this work. After-
wards, we go over the system architecture. Lastly, we demonstrate

1https://github.com/satya77/Temporal_Tagger_Service

https://onlinedating.ifi.uni-heidelberg.de
https://github.com/satya77/Temporal_Tagger_Service
https://doi.org/10.1145/3477495.3531670
https://doi.org/10.1145/3477495.3531670
https://doi.org/10.1145/3477495.3531670
https://github.com/satya77/Temporal_Tagger_Service


Figure 1: System architecture. Users can either interact with
our system through the provided interface, or access it di-
rectly via a programmatic API. The backend binds to a di-
verse set of models.

intended workflows and demonstration scenarios, and conclude
with a brief summary and an outlook on future extensions.

2 RELATEDWORK
We primarily limit the scope of related works to tools focusing on
the extraction (and normalization) of temporal expressions. For a
more comprehensive overview of the field and its challenges, we
refer the reader to the more extensive works by Campos et al. [5]
and Nagahuna et al. [14].

Most prominently in the space of temporal tagging are Heidel-
Time [26] and SUTime [8]; while their performance is not nec-
essarily state-of-the-art anymore, they remain the most frequent
choices as baselines due to their relatively mature Java packages
and comparatively easy integration into existing pipelines. Both
also have available (and relatively recent) Python bindings.2,3
Further packages with publicly available code exist, but with some
shortcoming: Syntime [31] and TOMN [30] provide uncompiled
Java packages, UWTime [16] lacks continued support and does not
run with Java 7 or newer. Python packages generally lack continued
development and thus compatibility with Python3. Examples are
ManTIME [11], TERNIP4 and TEXer [13]. SpaCy5 is probably one
of the most prominent packages used nowadays, and their English
models are able to tag temporal expressions in English, although
without any further distinction between expression types. One
extension to a more compatible TIMEX-based tagging is Timexy6,
although there is no known performance evaluation of this package
on existing datasets.
More recently, Transformer-based tagging models have been intro-
duced [1, 2, 9, 15, 25]; publicly available models (e.g., from [1, 2])
can be used through the Huggingface transformers library, but do
not directly output TimeML-compatible annotations [21].

2https://github.com/PhilipEHausner/python_heideltime, last accessed: 2022-02-15
3https://github.com/FraBle/python-sutime, last accessed: 2022-02-15
4https://github.com/cnorthwood/ternip, last accessed: 2022-02-17
5https://spacy.io/, last accessed: 2022-02-17
6https://github.com/paulrinckens/timexy, last accessed: 2022-04-22

Rudimentary web interfaces for extracting temporal annotations
exist to our knowledge only for HeidelTime and SUTime.7,8 While
SUTime allows for slightly more flexible tagging options, Heidel-
Time’s demo is the only one to directly export annotated XML. Even
then, HeidelTime’s demo has no option to extract text from batches
of documents. Further, none of their APIs allow for a simple visual
comparison of tagging results. This is crucial, because it would give
users the ability to quickly judge the appropriateness of competing
annotation methods, and compare their respective results without
having to manually align the hard-to-interpret XML outputs or run
through several different interfaces.

3 SYSTEM IMPLEMENTATION
We briefly introduce the general setting for temporal tagging and
outline the various models. For the description of our system imple-
mentation, we elaborate on the backend API server and its separate
visual web interface. A conceptual view of the architecture and the
interactions can be seen in Figure 1.

3.1 Models
Temporal tagging is the task of identification, classification, and
optionally normalization of temporal information in a text. Mul-
tiple schemas for temporal tagging have been proposed, but the
most prominent one is TIMEX3, which follows the XML schema
defined by the TimeML standard [21]. As an example, the sen-
tence "Yesterday I went to the cinema" could be tagged as "<TIMEX3
type=’DATE’>Yesterday</TIMEX3> I went to the cinema". TIMEX3
tags can optionally contain a normalized representation of the date
(e.g., "2022-02-20" instead of "yesterday"), where a reference date of
the text is required to find an appropriate normalization. The type
attribute represents the four available TIMEX3 classes. These are
DATE (e.g., "28th March, 1982"), SET (recurring times, e.g., "every
Monday"), DURATION (time intervals, e.g., "for two hours"), TIME (a
more specific point in time, e.g., "tomorrow at 2pm"). Despite its
widespread use, an XML file with TIMEX3 annotations is not intu-
itive to read and interpret for a non-expert user. Therefore, in the
demo, we convert the tags to a span-based highlighting for visual
inspections and use TIMEX3 only when exporting annotations.
For this demo, we include the prominent tagging tools with working
Python implementations, namely HeidelTime [26] and SUTime [8]
as well as Transformer-based taggingmodels from previous work [1,
2]. In the following, we briefly describe each model.

3.1.1 Tranformer Models. Identification of temporal expressions
and assigning TIMEX3 types can be formalized as a token classifica-
tion task, where the class label of each token indicates the TIMEX3
type of the temporal expression. In our case, Transformer models
are fine-tuned language models for token classification of temporal
tags. However, due to the data availability, these models can only
be made available for a subset of languages. For English, we include
three different taggers from Almasian et al. [1]:

(1) Classifier: A BERT-based token classifier, which predicts
the probability distribution over the four TIMEX3 classes
(see above) for each token.

7https://heideltime.ifi.uni-heidelberg.de/heideltime/, last accessed: 2022-02-15
8http://nlp.stanford.edu:8080/sutime/process, last accessed: 2022-02-15

https://github.com/PhilipEHausner/python_heideltime
https://github.com/FraBle/python-sutime
https://github.com/cnorthwood/ternip
https://spacy.io/
https://github.com/paulrinckens/timexy
https://heideltime.ifi.uni-heidelberg.de/heideltime/
http://nlp.stanford.edu:8080/sutime/process


(a) Document view

(b) Editor view

Figure 2: Document overview page (top) and editor view (bottom). The document view serves as the landing page of the web
interface. It allows for (batch) upload of documents and processingwith specified parameters. In the editor view, tagging results
of specific documents can be inspected, including alignment and highlighting of extracted temporal expressions. This includes
color-coded distinction of different classes as well as the additional display of normalized values.

(2) Classifier_CRF: Similar to Classifier, but with an additional
CRF layer instead of the linear layer, to account for the impact
of neighboring tagging decisions on the current class label.

(3) Classifier_DATE: A custom BERT tagging model with an
additional reference date embedding layer.

For German, we include a single model with the same architec-
ture as the previously mentioned Classifier variant, based on the
model presented by Almasian et al. [2]; this model has been addi-
tionally pre-trained on weakly labeled data and fine-tuned from a
pre-trained checkpoint of GELECTRA-large [7]. The classification
head again outputs class probabilities for each token type class,
similar to the English Classifier.
As a caveat, token classification models only perform identification
and classification of tags and are incapable of value normalization.
To our knowledge, no further neural models supporting differ-
ent languages exist with publicly available checkpoints, although
multilingual approaches have been evaluated in the literature be-
fore [15, 25].

3.1.2 HeidelTime. A rule-based temporal tagger that uses tempo-
ral expression patterns, knowledge resources, and linguistic clues.
HeidelTime both classifies and normalizes tags and is available in
multiple languages. In this work, we include all languages with an
explicit rule set, but do not consider the automatically translated

rules. Users can further choose between different domain-specific
rule sets ("news", "scientific", "narrative" or "colloquial").

3.1.3 SUTime. SUTime is another rule-based temporal tagger built
on regular expression patterns, which integrates into the CoreNLP
pipeline. Compared to HeidelTime, SUTime only covers American
and British English, as well as Spanish.

3.1.4 Timexy. As a final component, we utilize this spaCy-based
extension, which currently supports three different languages (Eng-
lish, German and French). Timexy also uses a rule-based pattern
detection algorithm, similar to HeidelTime and SUTime. Due to its
direct integration with Python, and lightweight ruleset, this method
is comparably faster than other currently supported approaches.

3.2 Backend
The backbone of our API service consists of a simple routing server
implemented with Flask-RESTful9 in Python.
Since HeidelTime and SUTime are both implemented in Java, we
utilize their respective Python wrappers to process documents.
This adds process-related overhead to each document call, however,
the respective rule-based approaches are otherwise fairly quick
in their annotation. In contrast, Transformer models are called

9version 0.3.9



directly through Huggingface’s transformers library [29]. Due to
the size of neural architectures, annotating texts with such models
is therefore mainly limited by the available CPU (or GPU) compute
power.
New models can easily be added by providing a wrapper around a
function call to the new library, which correctly passes the input
text and optional parameters down to any new service, as long as
they can be called from within Python. Direct POST requests to the
API similarly need to contain a payload consisting of the respective
input text, model type, and optional document reference date.
To accelerate the processing of neural models, our backend server
is running on a machine with an Nvidia Titan RTX GPU. We further
ensure that text segments are properly split for Transformer models
to not exceed their maximum token lengths.

3.3 Web Interface
Theweb application is served via another Flask Pythonweb server 10,
and the interface is implemented in HTML and JavaScript. The in-
terface accepts user input in the form of raw text files, or pasted
text in the editor view, and passes model parameters and the request
payload to the backend with AJAX. The application connects to the
API with a POST request to return the tagged input. The Bootstrap
dashboard from Core UI11 and Jinja2 web template enables the
interactive layout. For the web interface, we further distinguish
between the following two web views:

3.3.1 Document View. The document view, displayed in Figure 2a,
serves as the entry point for the web service. It provides a dashboard
in which users can manage one or multiple files to be annotated,
including an overview of already uploaded documents. Further,
users may (un)select specific elements for batch processing jobs,
using the selection check box on the left-hand side.
Documents can be opened in a separate view for inspection or
removed from the list completely, using the respective buttons in
the "OPERATION" column.We allow for multiple ways to add a new
document, either by creating one from scratch or uploading from
existing local files. The "CREATE" button generates a new empty
document, which can be filled with content by opening it in the
editor’s view. Existing documents can be added with the "UPLOAD"
button, which opens a separate context window where users can
select one or multiple files for processing. Our interface accepts
plain text files and XML documents containing a <TEXT> tag as
input, which is the standardized representation of existing temporal
tagging corpora. For demonstration, we have also included sample
documents taken from the TempEval-3 dataset [28] for English and
KRAUTS [27] for German samples. A random sample document
can be generated by clicking on the "EXAMPLE" button.
Depending on user preferences, the interface allows for the selection
of available models (cf. Section 3.1), through the model dropdown
list, as well as setting the document language. When selecting a
model, users are then also able to select model-specific parameters.
For example, several methods also support the specification of a
"reference date", which will then be used as the anchor point in the
normalization step of relative temporal expressions. If needed, users
can specify the document creation time of each input separately. In

10https://flask.palletsprojects.com/en/2.0.x/, last accessed: 2022-02-19
11https://coreui.io/, last accessed: 2022-02-19

addition to the model specifications, users may select one or more
of the four available TIMEX3 annotation classes, by enabling or
disabling temporal type filters, which will limit the tagging process
accordingly.
In the document view, clicking on the "EXPORT" button will trigger
a batch processing job with the specified parameters of all selected
documents at the same time, returned as a downloadable zip folder.

3.3.2 Editor View. Upon clicking the "OPEN" button on the doc-
ument view, users may enter the Editor view (cf. Figure 2b). This
view allows users to edit the text of a particular document. In ad-
dition, it further allows them to investigate and compare tagging
results of an individual document, by previewing the extracted tags
given a particular parameter choice. The model choice and type
filtering is presented in a similar fashion to the processing in the
document view. This time the type filtering section also displays
the total count of each type found in the document. Each tagging
result will be displayed within the text area, by underlining the
temporal expression, color-coded based on the specified type colors
on temporal type filters. The column on the right side of the editor
contains the aggregation of all expressions. Normalized versions
of the temporal expression are given if the underlying annotation
model supports such a step, and subsequently requires a valid doc-
ument reference date. By hovering over a particular result in either
pane, the associated expression will be highlighted visually to ease
the alignment of tagged texts and normalized values. To try out
different models, the user can click on the "RESET" button and
choose a new method from the dropdown menu. To export a single
document in the editor view, users may click on the "EXPORT"
button.

4 SYSTEM DEMONSTRATION
We describe different user workflows that can be executed with
the current capabilities of our interface. In general, for all of these
scenarios, one of the main advantages remains the ability to run
several different methods out-of-the-box, without having to worry
about individual installations.

4.1 Comparison of Tagging Results
A critical lack of functionality in previous interfaces is the inability
to compare different models, due to the lack of integration of mul-
tiple annotation tools under a single interface. Since models have
been generally tailored towards (or trained on) specific domains
of texts, the quality of annotations can severely differ based on
the input, which makes an appropriate model choice even more
important.
After uploading the documents to be processed, users may inspect
the annotation quality of individual samples in the editor view,
where they can iterate through available methods and compare the
annotation results and their respective quality. The comparison
is possible by re-computing tagging results on a text, or opening
multiple different instances of the annotation interface. This use
case is also helpful to understand the particularities of different
model-specific parameters at a glance and to make task-appropriate
choices during initial data exploration.

https://flask.palletsprojects.com/en/2.0.x/
https://coreui.io/


4.2 Batch Processing of Document Collections
A relatively straightforward application is the processing of sev-
eral texts at once, to quickly obtain annotations for a collection of
documents. For this purpose, users can utilize the option to upload
folders of documents via the document view, which is also not avail-
able in previous interfaces or would require a hand-written script
for any existing software tooling.
It is both possible to provide a singular setting for all documents
and process the mat once, or process select groups of documents
with distinct parameter choices. This can be done by selecting the
appropriate file groups in the overview menu and running with the
preferred model parameters.

4.3 API Processing
In particular, due to our API design, the tool also allows for pro-
grammatic access to the annotation service. This may be desirable
for several reasons:

(1) Programmatic accesses can avoid manual interaction with
the web interface, eliminating user interactions, especially
when dealing with a large number of documents.

(2) Users can define their own API endpoints based on custom
model configurations, by extending the publicly available
source. This is critical to support models with slightly dif-
ferent input/output specifications, e.g., due to additional
parameters.

(3) Depending on the available hardware, it is possible to run
the API server on a different machine, allowing multiple
users to access a centrally set-up tagging interface, requiring
less manual oversight over local installations.

5 CONCLUSION AND ONGOINGWORK
In this work, an extensible and unified web interface for tempo-
ral tagging was presented, combining several existing annotation
frameworks in a single API. We streamline the processing of groups
of documents and allow users to compare tagging results of different
extraction approaches.
As future extensions, the editor view lends itself for semi-automatic
annotation tasks, where user feedback could be taken into account
and models could be subsequently re-trained with feedback. For
extensions of the API itself, aside from further model inclusions,
we currently only support TIMEX3-compatible XML outputs; ex-
tension schemes such as SCATE [4] would be a sensible addition.
Alternative options include, for example, support for temporal rea-
soning [17] or event relation extraction [12, 18, 20], which are more
complex to annotate and visualize.

REFERENCES
[1] Satya Almasian, Dennis Aumiller, and Michael Gertz. 2022. BERT got a Date:

Introducing Transformers to Temporal Tagging. (2022). forthcoming.
[2] Satya Almasian, Dennis Aumiller, and Michael Gertz. 2022. Time for some

German? Pre-Training a Transformer-based Temporal Tagger for German. In
Proceedings of Text2Story - Fifth Workshop on Narrative Extraction From Texts co-
located with 44nd European Conference on Information Retrieval, Text2Story@ECIR
2022, Stavanger, Norway, April 10th, 2022 (CEUR Workshop Proceedings, Vol. 3117),
Ricardo Campos, Alípio Mário Jorge, Adam Jatowt, Sumit Bhatia, and Marina
Litvak (Eds.). CEUR-WS.org, 83–90.

[3] Omar Alonso, Michael Gertz, and Ricardo A. Baeza-Yates. 2007. On the value of
temporal information in information retrieval. SIGIR Forum 41, 2 (2007), 35–41.
https://doi.org/10.1145/1328964.1328968

[4] Steven Bethard and Jonathan Parker. 2016. A Semantically Compositional
Annotation Scheme for Time Normalization. In Proceedings of the Tenth In-
ternational Conference on Language Resources and Evaluation (LREC’16). Euro-
pean Language Resources Association (ELRA), Portorož, Slovenia, 3779–3786.
https://www.aclweb.org/anthology/L16-1599

[5] Ricardo Campos, Gaël Dias, Alípio Mário Jorge, and Adam Jatowt. 2014. Survey
of Temporal Information Retrieval and Related Applications. ACM Comput. Surv.
47, 2 (2014), 15:1–15:41. https://doi.org/10.1145/2619088

[6] Ricardo Campos, Alípio Jorge, Adam Jatowt, Sumit Bhatia, and Marina Litvak.
2022. The 5th International Workshop on Narrative Extraction from Texts:
Text2Story 2022. In Advances in Information Retrieval - 44th European Conference
on IR Research, ECIR 2022, Stavanger, Norway, April 10-14, 2022, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 13186), Matthias Hagen, Suzan Verberne,
Craig Macdonald, Christin Seifert, Krisztian Balog, Kjetil Nørvåg, and Vinay
Setty (Eds.). Springer, 552–556. https://doi.org/10.1007/978-3-030-99739-7_68

[7] Branden Chan, Stefan Schweter, and TimoMöller. 2020. German’s Next Language
Model. In Proceedings of the 28th International Conference on Computational
Linguistics. International Committee on Computational Linguistics, Barcelona,
Spain (Online), 6788–6796. https://doi.org/10.18653/v1/2020.coling-main.598

[8] Angel X. Chang and Christopher Manning. 2012. SUTime: A library for rec-
ognizing and normalizing time expressions. In Proceedings of the Eighth In-
ternational Conference on Language Resources and Evaluation (LREC’12). Eu-
ropean Language Resources Association (ELRA), Istanbul, Turkey, 3735–3740.
http://www.lrec-conf.org/proceedings/lrec2012/pdf/284_Paper.pdf

[9] Sanxing Chen, Guoxin Wang, and Börje Karlsson. 2019. Exploring Word Repre-
sentations on Time Expression Recognition. Technical Report. Microsoft Research
Asia.

[10] Mahmoud El-Haj, Paul Rayson, and Andrew Moore. 2018. The First Financial
Narrative Processing Workshop (FNP 2018). In Proceedings of the LREC 2018
Workshop.

[11] Michele Filannino, Gavin Brown, and Goran Nenadic. 2013. ManTIME: Temporal
expression identification and normalization in the TempEval-3 challenge. In
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume
2: Proceedings of the Seventh International Workshop on Semantic Evaluation
(SemEval 2013). Association for Computational Linguistics, Atlanta, Georgia,
USA, 53–57. https://www.aclweb.org/anthology/S13-2009

[12] Rujun Han, Mengyue Liang, Bashar Alhafni, and Nanyun Peng. 2019. Con-
textualized Word Embeddings Enhanced Event Temporal Relation Extraction
for Story Understanding. CoRR abs/1904.11942 (2019). arXiv:1904.11942 http:
//arxiv.org/abs/1904.11942

[13] Tianyong Hao, Alex Rusanov, and Chunhua Weng. 2013. Extracting and nor-
malizing temporal expressions in clinical data requests from researchers. In
International Conference on Smart Health. Springer, 41–51.

[14] Nattiya Kanhabua, Roi Blanco, and Kjetil Nørvåg. 2015. Temporal Information
Retrieval. Found. Trends Inf. Retr. 9, 2 (2015), 91–208. https://doi.org/10.1561/
1500000043

[15] Lukas Lange, Anastasiia Iurshina, Heike Adel, and Jannik Strötgen. 2020. Ad-
versarial Alignment of Multilingual Models for Extracting Temporal Expres-
sions from Text. In Proceedings of the 5th Workshop on Representation Learning
for NLP. Association for Computational Linguistics, Online, 103–109. https:
//doi.org/10.18653/v1/2020.repl4nlp-1.14

[16] Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettlemoyer. 2014. Context-
dependent Semantic Parsing for Time Expressions. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, Baltimore, Maryland, 1437–
1447. https://doi.org/10.3115/v1/P14-1135

[17] Artuur Leeuwenberg and Marie-Francine Moens. 2019. A Survey on Temporal
Reasoning for Temporal Information Extraction from Text. Journal of Artificial
Intelligence Research 66 (2019), 341–380. https://doi.org/10.1613/jair.1.11727

[18] Chen Lin, TimothyMiller, Dmitriy Dligach, Steven Bethard, and Guergana Savova.
2017. Representations of Time Expressions for Temporal Relation Extraction with
Convolutional Neural Networks. In BioNLP 2017. Association for Computational
Linguistics, Vancouver, Canada„ 322–327. https://doi.org/10.18653/v1/W17-2341

[19] Hector Llorens, Estela Saquete, and Borja Navarro. 2010. TIPSem (English and
Spanish): Evaluating CRFs and Semantic Roles in TempEval-2. In Proceedings
of the 5th International Workshop on Semantic Evaluation. Association for Com-
putational Linguistics, Uppsala, Sweden, 284–291. https://www.aclweb.org/
anthology/S10-1063

[20] Yuanliang Meng, Anna Rumshisky, and Alexey Romanov. 2017. Temporal In-
formation Extraction for Question Answering Using Syntactic Dependencies in
an LSTM-based Architecture. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguis-
tics, Copenhagen, Denmark, 887–896. https://doi.org/10.18653/v1/D17-1092

[21] James Pustejovsky, Kiyong Lee, Harry Bunt, and Laurent Romary. 2010. ISO-
TimeML: An International Standard for Semantic Annotation. In Proceedings of
the International Conference on Language Resources and Evaluation, LREC 2010,
Valletta, Malta. European Language Resources Association.

https://doi.org/10.1145/1328964.1328968
https://www.aclweb.org/anthology/L16-1599
https://doi.org/10.1145/2619088
https://doi.org/10.1007/978-3-030-99739-7_68
https://doi.org/10.18653/v1/2020.coling-main.598
http://www.lrec-conf.org/proceedings/lrec2012/pdf/284_Paper.pdf
https://www.aclweb.org/anthology/S13-2009
https://arxiv.org/abs/1904.11942
http://arxiv.org/abs/1904.11942
http://arxiv.org/abs/1904.11942
https://doi.org/10.1561/1500000043
https://doi.org/10.1561/1500000043
https://doi.org/10.18653/v1/2020.repl4nlp-1.14
https://doi.org/10.18653/v1/2020.repl4nlp-1.14
https://doi.org/10.3115/v1/P14-1135
https://doi.org/10.1613/jair.1.11727
https://doi.org/10.18653/v1/W17-2341
https://www.aclweb.org/anthology/S10-1063
https://www.aclweb.org/anthology/S10-1063
https://doi.org/10.18653/v1/D17-1092


[22] Dragomir Radev, Beth Sundheim, Lisa Ferro, Roser Saurí, Andy See, and James
Pustejovsky. 2002. Using TimeML in Question Answering. Technical Report.
Brandies University.

[23] Frank Schilder and Christopher Habel. 2001. From temporal expressions to
temporal information: Semantic tagging of news messages. In Proceedings of the
ACL 2001 workshop on temporal and spatial information processing.

[24] Andrea Setzer and Robert Gaizauskas. 2000. Annotating Events and Tem-
poral Information in Newswire Texts. In Proceedings of the Second Interna-
tional Conference on Language Resources and Evaluation (LREC’00). European
Language Resources Association (ELRA), Athens, Greece. http://www.lrec-
conf.org/proceedings/lrec2000/pdf/321.pdf

[25] Michal Starý, Zuzana Neverilová, and Jakub Valcík. 2020. Multilingual Recogni-
tion of Temporal Expressions. In The 14thWorkshop on Recent Advances in Slavonic
Natural Languages Processing, RASLAN 2020, Brno (on-line), Czech Republic, De-
cember 8-10, 2020. Tribun EU, 67–78. http://nlp.fi.muni.cz/raslan/2020/paper2.pdf

[26] Jannik Strötgen and Michael Gertz. 2010. HeidelTime: High Quality Rule-Based
Extraction and Normalization of Temporal Expressions. In Proceedings of the 5th
International Workshop on Semantic Evaluation. Association for Computational
Linguistics, Uppsala, Sweden, 321–324. https://www.aclweb.org/anthology/S10-
1071

[27] Jannik Strötgen, Anne-Lyse Minard, Lukas Lange, Manuela Speranza, and
Bernardo Magnini. 2018. KRAUTS: A German Temporally Annotated News
Corpus. In Proceedings of the Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018). European Language Resources Association
(ELRA), Miyazaki, Japan. https://www.aclweb.org/anthology/L18-1085

[28] Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verha-
gen, and James Pustejovsky. 2013. SemEval-2013 Task 1: TempEval-3: Evaluat-
ing Time Expressions, Events, and Temporal Relations. In Second Joint Con-
ference on Lexical and Computational Semantics (*SEM), Volume 2: Proceed-
ings of the Seventh International Workshop on Semantic Evaluation (SemEval
2013). Association for Computational Linguistics, Atlanta, Georgia, USA, 1–9.
https://www.aclweb.org/anthology/S13-2001

[29] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

[30] Xiaoshi Zhong and Erik Cambria. 2018. Time Expression Recognition Using a
Constituent-based Tagging Scheme. In Proceedings of the 2018 World Wide Web
Conference onWorld Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-
Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis
(Eds.). ACM, 983–992. https://doi.org/10.1145/3178876.3185997

[31] Xiaoshi Zhong, Aixin Sun, and Erik Cambria. 2017. Time Expression Analysis
and Recognition Using Syntactic Token Types and General Heuristic Rules. In
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Vancouver, Canada, 420–429. https://doi.org/10.18653/v1/P17-1039

http://www.lrec-conf.org/proceedings/lrec2000/pdf/321.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/321.pdf
http://nlp.fi.muni.cz/raslan/2020/paper2.pdf
https://www.aclweb.org/anthology/S10-1071
https://www.aclweb.org/anthology/S10-1071
https://www.aclweb.org/anthology/L18-1085
https://www.aclweb.org/anthology/S13-2001
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/3178876.3185997
https://doi.org/10.18653/v1/P17-1039

	Abstract
	1 Introduction
	2 Related Work
	3 System Implementation
	3.1 Models
	3.2 Backend
	3.3 Web Interface

	4 System Demonstration
	4.1 Comparison of Tagging Results
	4.2 Batch Processing of Document Collections
	4.3 API Processing

	5 Conclusion and Ongoing Work
	References

