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Preface
This is the print version of the slides of the first ATM class in summer 2017.

Some animations available in the screen version – in particular in the clustering section – are

condensed into a single slide to reduce redundancy in the printout and the number of pages.

This class had 11 lecture sessions of 90 minutes each (including time for organizational and QA)

plus tutorial sessions with hand-on experience, and gave 4 ECTS points.

Some slides are withheld because of uncertain image copyright.

Organizational slides are not included in this version.

The screen version contained about 172 numbered frames with a total of 361 slides.

Screen version, homework assignments, etc. are currently not available publicly.

This material is made available as-is, with no guarantees on completeness or correctness.

All rights reserved. Re-upload or re-use of these contents requires the consent of the author(s).
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Changes for future versions
The following changes are suggested for a future iteration:

I Reduce: word2vec in Foundations, as there is a separate chapter on word and document

embeddings. Initially it was not clear if we will be able to cover this in this class.

I Add: intrinsic dimensionality to the curse of dimensionality (which received unexpected

interest by the a�endees)

I Add: a topic modeling on book title example / homework

I Add: Collection frequency vs. document frequency

I Add: discuss n-gram in the preprocessing.

I Add: Evaluation of IR, e.g., NDCG, Perplexity?

I Add: discussion of PMI, PPMI, in word2vec etc.?

I Add: nonnegative matrix factorization (NMF)

I Add: computation examples with word2vec?
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Introduction Text Mining is Difficult 1: 1 / 6

Why is Text Mining Difficult?
Example: Homonyms

Apples have become more expensive.

I Apple computers?

I Apple fruit?

Many homonyms:

I Bayern: the state of Bavaria, or the soccer club FC Bayern?

I Word: the Microso� product, or the linguistic unit?

I Jam: tra�ic jam, or jelly?

I A duck, or to duck? A bat, or to bat?

I Light: referring to brightness, or to weight?
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Why is Text Mining Difficult?
Example: Negation, sarcasm and irony

This phone may be great, but I fail to see why.

I This actor has never been so entertaining.

I The least o�ensive way possible

I Colloquial: [. . . ] is the shit!

I Sarcasm: Tell me something I don’t know.

I Irony: This cushion is so� like a brick.
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Why is Text Mining Difficult?
Example: Errors, mistakes, abbreviations
People are lazy and make mistakes, in particular in social media.

I Let’s eat, grandma. (German: Komm, wir essen, Oma.)

I I like cooking, my family, and my pets.

I They’re there with their books.

I You’re going too fast with your car.

I I need food. I am so hungary.

I Let’s grab some bear.

I Next time u r on fb check ur events.

I I’m hangry. (Hungry + angry = hangry)
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Recent success is impressive, but also has limits
We cannot “learn” everything
We have seen some major recent successes:

I AI assistants like Google Assistant, Siri, Cortana, Alexa.

I Machine translation like Google, Skype.

But that does not mean this approach works everywhere.

I Require massive training data.

I Require labeled data.

I Most functionality is command based, fallback to web search

E.g. “take a selfie” is a defined command, and not “understood” by the KI.

For example machine translation: the EU translates millions of pages per year, much of which is

publicly available for training translation systems.

Unsupervised text mining—the focus of this class—is much harder!
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Why is Text Mining Difficult?
Example: Stanford CoreNLP
Stanford CoreNLP: The standard solution for Natural Language Processing (NLP) [Man+14].

NLP is still hard, even just sentence spli�ing:

Example (from a song list):

All About That Bass
by Scott Bradlee’s Postmodern Jukebox feat. Kate Davis

Sentence 1: All About That Bass by Scott Bradlee’s Postmodern Jukebox feat.
Sentence 2: Kate Davis
Named entity: Postmodern Jukebox feat

Best accuracy: 97% on news (and <90% on other text [HEZ15])⇒ several errors per document!

Many more, and even worse in German (e.g. splits 1. Bundesliga into two sentences!)
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Why is Text Mining Difficult?
Example: Never-Ending Language Learner
Never-Ending Language Learner (NELL) [Mit+15]:

I learning computer system

I reading the web 24 hours/day since January 2010

I knowledge base with over 80 million confidence-weighted beliefs

What NELL believes to know about apple (plant): (with high confidence!)

“steve” is believed to be a Canadian journalist.

The first “jobs” is a mixture of Steve Jobs, Steve Wozniak, and Steve Ensminger (LSU football coach)

and some other Steve with a wife named Sarah? (The CEO of Apple Bank is Steven Bush)

“steve_jobs” is believed to be a professor and the CEO of “macworld (publication)”.

The second “jobs” is a building located in the city vegas.
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Linear Algebra
We will usually be representing documents as vectors!

I Vector space math

I Vectors

I Matrices

I Multiplication

I Transpose

I Inverse

I Matrix factorization

I Principal Component Analysis (PCA, “Hauptachsentransformation”),

Eigenvectors and Eigenvalues, . . .

I Singular Value Decomposition

M = UΣV T
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Linear Algebra II
Vector:

~v = (v1, v2, . . . , vj)
T

Matrix:

M =


m11 m12 · · · m1j

m21 m22 · · · m2j
.
.
.

.

.

.

.
.
.

.

.

.

mi1 mi2 · · · mij

 =


~m1
T

~m2
T

.

.

.

~mi
T

 = ( ~m1, ~m2, . . . ~mi)
T

Transpose laws:

(M~x)T = ~xTMT

Orthogonality:

OT = O−1

We will omit the ~ and
T

where

they can be easily inferred.

Computer scientists usually

store vectors in rows, not columns.

So notation will vary across sources.

Double-check dimensions every time.
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Linear Algebra III – PCA
On centered (or standardized) data, with weights

∑
i ωi = 1, we have

XTX =
∑
i

ωiviv
T
i = Cov(X)

Decompose this Covariance matrix into:

XTX = W TΣ2W = (ΣW )T ΣW

where W is an orthonormal (rotation) matrix, and Σ is a diagonal (scaling) matrix.

The vectors of W are called eigenvectors, the values of Σ are called eigenvalues.

Project using:

x′ := Σ︸︷︷︸
Scale

W︸︷︷︸
Rotate

x
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Linear Algebra IV – PCA II
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Linear Algebra V – SVD
The decomposition in PCA is usually implemented using the SVD routine.

Singular Value Decomposition is a more general decomposition procedure.

It allows us to decompose any m× n matrix into

A = UΣV T

where U is an orthogonal m×m matrix,

Σ is a diagonal m× n matrix,

V is an orthogonal n× n matrix.

By convention, Σ is arranged by descending values.
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Linear Algebra VI – SVD II

0
0

A

=

U

×
Σ

×
V T

At first sight, this makes the data even larger. So why do we want to do this?

I Matrix properties are beneficial: orthogonal (U , V ) respectively diagonal (Σ).

I If Σ has zeros on the diagonal, we can reduce the matrix sizes without loss.
I We can approximate (with least-squared error) the data by further shrinking the matrix.

Intuition: U maps rows to factors, Σ is the factor weight, and V maps factors to columns.

PCA is o�en used the same way – by keeping only the most important components!
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Statistics
We are o�en using statistical language models!

I Elementary probability theory

I Conditional probabilities

P (A|B)

I Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)

I Random variables, probability density, cumulative density

I Expectation and variance.
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Statistics I – Probabilities
Some basic terms and properties:

I P (A): Probabilitiy that A occurs

I P (AB) = P (A ∧B) = P (A ∩B) = P (A,B): Probability that A and B occur

I P (A|B) = P (A∧B)
P (B) : Conditional probability that A occurs if B occurs

I P (A ∨B) = P (A ∪B) = P (A) + P (B)− P (AB): A or B (or both) occur

I P (A ∩B) = P (A) · P (B)⇔: A and B are independent

I 0 ≤ P (A) ≤ 1; P (∅) = 0; P (¬A) = 1− P (A)
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Statistics II – Bayes’ rule

P (A|B) =
P (A ∧B)

P (B)

⇒ P (A ∧B) = P (A|B) · P (B)

⇒ P (B ∧A) = P (B|A) · P (A)

Because A ∧B = B ∧A, these are equal:

⇒ P (A|B)P (B) = P (B|A)P (A)

And we can derive Bayes’ rule:

⇒ P (B|A) =
P (A|B)P (B)

P (A)
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Statistics III — Bayes’ rule II

P (B|A) = P (A|B)
P (B)

P (A)

Why is Bayes’ rule important?Bayes’ rule is important, because it allows us to reason “backwards”.

If we know the probability of B → A, we can compute the probability of A→ B.

If one of these values cannot be observed, we can estimate it using Bayes’ rule.

If we do not know either P (A) or P (B), we may still be able to cancel it out it some equations

(if we can look at the relative likelihood of two complementary options, e.g., spam vs. not spam).
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Statistics IV — Bayes’ rule III
Example – Breast Cancer detection:

Probability Test positive Test negative

Breast cancer 1% 80% 20%

No breast cancer 99% 9.6% 90.4%

�estion: is this a good test for breast cancer?Naive answer: Test results are 80–90% correct.

If the test result is positive, what is the probability of having cancer (= test is correct)?

P (cancer|positive) = P (positive|cancer) · P (cancer)

P (positive)

= 80% · 1%

80% · 1% + 9.6% · 99%

≈ 7.8%

In > 90% of “cancer detected” cases, the patient is fine! (Because 10% of 99%� 80% of 1%.)
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Statistics V – Random Variables and Probability Density
Random variable X : maps outcomes to some measureable quantity (typically: real value).

Example: throw of acutal dices on the table︸ ︷︷ ︸
Unique event

7→ sum of eyes on dices︸ ︷︷ ︸
Variable that we model

Variables are o�en binary (head=1, tail=0), discrete (2. . .12 eyes), or real valued.

Discrete:
Probability mass function: pmfX(xi) = P (X = xi)
Continuous (real valued):
Probability density function: pdfX(x) = d

dx cdfX(x)
Cumulative density function: cdfX(x) = P (X ≤ x) (cdfX(x) =

∫ x
−∞ pdfX(x) dx)

Notes: The point probability P (X = x) of a continuous variable is usually 0, because there is an infinite number of real

numbers – consider the probability of measuring a temperature of exactly π: P (Temperature = π).

The cdf(x) exists for discrete and continuous, but is less commonly used with discrete variables.

The pdf(x) can be larger than 1, and is not a probability (the cdf and pmf are)!
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Statistics V – Random Variables and Probability Density
Probability mass function (pmf): This is a discrete

distribution.

x

1 2 3 4 5 6 7 8 9 10 11 12 13−∞ ∞

0.05

0.10

0.15

Sum of eyes of two fair dice
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Statistics V – Random Variables and Probability Density
Cumulative density function (cdf):

x

1 2 3 4 5 6 7 8 9 10 11 12 13−∞ ∞

0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1

Sum of eyes of two fair dice
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Statistics V – Random Variables and Probability Density
Probability density function (pdf): No y axis scale given, be-

cause this depends on σ.

x

−4σ −3σ −2σ −σ 0 σ 2σ 3σ 4σ−∞ ∞
Normalverteilung N (0;σ)
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Statistics V – Random Variables and Probability Density
Cumulative density function (cdf):

x
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

−4σ −3σ −2σ −σ 0 σ 2σ 3σ 4σ−∞ ∞
Normalverteilung N (0;σ)
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Statistics VI – Expectation and Variance
Expected value (discrete):

E[X] = µX =
∑
i

pixi =
∑
i

pmfX(xi)xi

Expected value (continuous):

E[X] = µX =

∫ ∞
−∞

pdfX(x)x dx

Variance:

Var[X] = σ2
X = E

[
(X − E[X])2

]
Useful for proofs, but problematic with floating point numerics:

Var[X] = E[X2]− E[X]2

σ is called the standard deviation.
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Information Theory
Data mining is all about information!

In information theory,

logarithms are usually base 2.

I Shannon Entropy

H = −
∑
i

pi log pi

I Mutual Information

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

I Kullback-Leibler Divergence

KL(P |Q) =
∑
i

pi log
pi
qi
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Data Mining
Text mining is data mining applied to text!

I Classification

I Support Vector Machines & Kernel Trick

I Nearest-Neighbor classification

I Naive Bayes

I Cluster analysis

I Hierarchical clustering

I k-means clustering

I Frequent Itemset Mining

I APRIORI, Eclat, FPgrowth

We will summarize this as necessary in the lecture, but it is best if you already know the basics.
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Lexical Units
A tiny bit of linguistics
Terminology we may use at some point in the lecture:

I A document is a longer piece of text.

I A section is a logical section within a document.

I A sentence is a sequence of tokens in a section, usually ending with a dot.
1

I A token usually is a word, but can also be, e.g., interpunction.

I A phrase is a short sequence of tokens (part of a sentence).

I A stem is the prefix of a word with inflection endings removed (e.g. fishing→ fish).

I A lemma is the logical base form (e.g., be�er→ good).
2

I A POS-tag is the part-of-speech interpretation of a token, e.g., verb, or noun.

1

At the end of a logical section—e.g., a headline—the dot may be missing

2

The noun “a meeting” and the verb “to meet” (e.g. in “we are meeting”) are di�erent lemmata.

E. Schubert Advanced Topics in Text Mining 2017-04-17



Foundations Lexical Units 3: 2 / 21

Part of speech and syntactic structure
A little bit of linguistics

A dog is chasing a boy on the playground . Tokens

DT NN VBZ VBG DT NN IN DT NN . POS

Noun phrase Complex Verb Noun phrase Noun phrase

Verb phrase Prepositional phrase

Verb phrase

Sentence

Structure

Animal Person Location

CHASE ON

Entities &
Relations

Request to stop the dog. Intention

Example taken from ChengXiang Zhai [ZM16]
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Motivation
Why we want to represent data as vectors.
We have text, i.e., a sequence of characters.

Many algorithms expect a vector from Rd.

z We need to convert text to vectors.

Text = bytes = vector? ASCII: A=65, B=66, C=67, D=68, E=69, . . .

Example = [69, 120, 97, 109, 112, 108, 101]?

This does not work well at all!

Algorithms assume that for every dimension i: xi ∼ yi if x and y are similar.

But documents can be similar, yet di�erent in almost every byte position:

H e s a i d : T h i s i s a n e x a m p l e .
S h e s a i d : T h i s i s a n e x a m p l e .

z We need a vector space with meaningful positions.
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Bag of Words
Vectorizing Text
Separate the documents into words, discard word order:

A “bag” or “multiset” is a set

that can contain multiple

instances of the same element

Birds of a feather flock together .
→ a bird feather flock of together

It is the early bird that gets the worm .
→ bird early get is it that the×2 worm

But the second mouse gets the cheese .
→ but cheese get mouse second the×2

Early to bed and early to rise , makes a man healthy , wealthy and wise .
→ a and×2 bed early×2 healthy make man rise to×2 wealthy wise

For be�er results, normalize words: birds → bird , gets → get . Discard . and , .
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Bag of Words II
Term-Document Matrix
Dim 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

a an
d

be
d

bi
rd

bu
t

ch
ee
se

ea
rl
y

fe
at
he
r

fl
oc
k

ge
t

he
al
th
y

is it ma
ke

ma
n

mo
us
e

ri
se

of se
co
nd

th
at

th
e

to to
ge
th
er

we
al
th
y

wi
se

wo
rm

Doc 1 1 1 1 1 1 1

Doc 2 1 1 1 1 1 1 2 1

Doc 3 1 1 1 1 1 2

Doc 4 1 2 1 2 1 1 1 1 2 1 1

Note: for a large document collection, we will have thousands of dimensions!
Denote as:

tf to,Doc 4 = 2

Do not store 0s

Use sparse data!

Similar documents should now have similar vectors.

z How can we measure similarity?
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Bag of Words III
TF-IDF
Words such as a , and , but , is , it , of , that , the to are not helpful for di�erentiating

documents. We could remove them (→ stopword removal), or we assign them a low weight.

TF-IDF (Term frequency × inverse document frequency) is a popular solution to this.
3

TF: Term Frequency

IDF: Inverse Document Frequency

idft := log
N

dft
= − log

dft
N

= − logP (t ∈ d)

(where N = |D| is the number of documents,

and dft = |{d ∈ D ∧ t ∈ d}| is the document frequency – number of documents with term t)

This weight is similar to Shannon information. More informative terms have more weight.

But the theoretical justification is di�icult [Spä72; Spä73; RS76; SWR00a; SWR00b; Rob04].

3

TF-IDF is also wri�en as “tf.idf” and “tf×idf”. This is not a minus, but a hyphen; we always use multiplication.
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Bag of Words IV
TF-IDF variations

Increased importance

of repeated words

Common terms

get less weight

Normalize for

document length

There exist many variations of TF-IDF (in SMART notation [Sal71; SB88]): [MRS08]

Term frequency (if tft,d> 0) Document frequency Document Normalization

n (natural) tft,d n (no) 1 n (none) 1

l (logarithm) 1 + log tft,d t (idf) logN/dft c (cosine) 1
/√∑

i w
2
i

a (augmented) 0.5 +
0.5·tft,d
maxt tft,d

p (prob idf) max{0, log N−dft
dft

} u (pivoted unique) 1/u (see [MRS08])

b (boolean) 1 (idf smooth) logN/(dft +1) b (byte size) 1/CharLengthα, α < 1

L (log mean)
1+log tft,d

1+meant∈d log tft,d

d (double log) 1 + log(1 + log tft,d)

(BM25)
k·tft,d

k+b·(L−1)+tft,d
(BM25) log N−dft +.5

dft +.5

(three val.) min{tft,d, 2}
(log1p) log(1 + tft,d)
(sqrt)

√
tft,d (manha�an) 1

/∑
i wi

Xapian and Lucene search now default to the BM25 variant [RZ09].
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Bag of Words V
TF and IDF variations visualized

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7  8  9  10

re
la

ti
ve

 tf
(x

) /
 tf

(1
)

absolute term frequency

natural
logarithm

augmented
boolean

double log
log1p

sqrt
three values
BM25 k=1.2
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Bag of Words V
TF and IDF variations visualized
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Exact Text Search
Binary Retrieval Model
If we want to search for bird + early , this corresponds to using AND on these columns:

Dim 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

a an
d

be
d

bi
rd

bu
t

ch
ee
se

ea
rl
y

fe
at
he
r

fl
oc
k

ge
t

he
al
th
y

is it ma
ke

ma
n

mo
us
e

ri
se

of se
co
nd

th
at

th
e

to to
ge
th
er

we
al
th
y

wi
se

wo
rm

Doc 1 1 1 1 1 1 1

Doc 2 1 1 1 1 1 1 1 1

Doc 3 1 1 1 1 1 1

Doc 4 1 1 1 1 1 1 1 1 1 1 1

bird AND early = 1100 AND 0101 = 0100

Matching document: Bit 2 = Document 2.
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Exact Text Search II
Inverted Index
We cannot store the binary matrix for large document collections.

Solution: We store only the 1’s, for each term.

bird → Doc 1 , Doc 2
early → Doc 2 , Doc 4

Optimizations:

I Sort lists, and use a merge operation to intersect lists in O(n+m)

I Skip pointers to skip multiple entries at once.

I B-trees with prefix compression to organize lists.

I Compress lists by storing deltas, variable-length integer encoding etc. [LB15; LKK16]

(Reduce IO cost, use SIMD instructions for fast decoding and intersection.)
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Exact Text Search III
Inverted Index
We can store auxiliary information in inverted indexes:

Auxiliary information Symbol Cost

Total number of documents dft O(|Terms |)
Number of occurrences tft,d O(N · avg-length)
Total number of occurrences

∑
d tft,d O(|Terms |)

Maximum number of occurrences maxd tft,d O(|Terms |)
Term positions within document O(N · avg-length)

(for phrase matches and the “NEAR” operator – usually 2–4× larger index)

For TF-IDF, we can store the quantity/position along with the document:

bird → Doc 1×1, Doc 2×1
early → Doc 2×1, Doc 4×2

early → Doc 2 @ 4, Doc 4 @ 1,5
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Ranked Retrieval
Approximative Matching
Exact matches (boolean model) tend to return no results, or too many results.

z We o�en want to see the “best” matches only.

We need a scoring function to sort results.

Intuition: TF: the more words match in the document, the be�er.

Intuition: IDF: common words should be given less weight than rare words.

Cosine similarity:

cos(A,B) :=
A ·B
‖A‖ · ‖B‖

=

∑
i aibi√∑

i a
2
i ·
√∑

i b
2
i

where A, B are the TF-IDF vectors.

Note: with c normalization, cos(A,B) =
‖A‖=1

‖B‖=1

A ·B =
∑

i aibi.
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Ranked Retrieval II
Approximative Matching with TF-IDF
For text search (unweighted query Q), we can simplify this to:

score(Q,D) :=
∑
t∈Q

tf-idft,d

This has the benefits:

I E�icient computation, one term at a time, and Q is usually small.

I Documents not in the inverted list get +0 (i.e. no change).

Improvements:

I Order terms t ∈ Q by descending idft, and try to stop early if the remaining documents

cannot become a top-k result anymore (if we know maxd tf-idft,d).

I Stop early and skip low-idf terms, even if we cannot guarantee the result to be correct

(the similarity it is only an approximation of real relevance anyway – it is never “correct”, and

frequent low-idf terms such as “in” and “the” will not change much anyway.)
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Ranked Retrieval III
TF-IDF Similarity for Clustering
For clustering etc. we do not want such a query-document asymmetry.

So we will usually use cosine similarity. If we normalize documents, this can be computed as the

dot product of the TF-IDF vectors (tf-idfA · tf-idfB):

cos(A,B) =
‖A‖=1

‖B‖=1

∑
t

tf-idft,A · tf-idft,B

Since t 6∈ A ∧ t 6∈ B ⇒ tft,A = 0 ∧ tft,B = 0⇒ tf-idft,A · tf-idft,B = 0, we only need:

cos(A,B) =
‖A‖=1

‖B‖=1

∑
t∈A∩B

tf-idft,A · tf-idft,B

Note: t ∈ A ∩B is usually a small set if the documents are dissimilar.

Do not materialize A ∩B – compute the dot product by merging the (sorted) sparse vectors,

skipping all t where t 6∈ A ∧ t 6∈ B (optimized sparse vector product).
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Contextual Word Representations
Word Context

A dog is chasing a on the playground .?

boy

I The context of a word is representative of the word.

I Similar words o�en have a similar context (e.g., girl ).

I Statistics can o�en predict the word, based on the context.

I Context of a word ≈ a document: a , chasing , is , on , playground , the

z Try to model words based on their context

But: many documents per word, same problems as with real documents, . . .
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Contextual Word Representations II
Alternatives to Bag-of-Words
Can we learn a Rd representation of words/text? [RHW86; Ben+03; RGP06]

(Recently: word2vec [Mik+13], vLBL [MK13], HPCA [LC14], [LG14a], GloVe [PSM14])

Basic idea:

1. Train a neural network (a map function, factorize a matrix) to either:

I predict a word, given the preceding and following words (Continuous Bag of Words, CBOW)

I predict the preceding and following words, given a word (Skip-Gram)

2. Configure one layer of the network to have d dimensions (for small d)

Usually: one layer network (not deep), 100 to 1000 dimensions.

3. Map every word to this layer, and use this as feature.

Note: this maps words, not documents!

We can treat the document ID like a word, and map it the same way. [LM14]
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Word2Vec
Beware of cherry picking
Famous example (with the famous “Google News” model):

Berlin is to Germany as Paris is to z France

Berlin − Germany = Paris − France

Beware of cherry picking!

Berlin is to Germany as Washington_D.C. is to z Spending_Surges
Ottawa is to Canada as Washington_D.C. is to z Quake_Damage
Germany is to Berlin as United_States is to z U.S.
Apple is to Microsoft as Volkswagen is to z VW
man is to king as boy is to z kings
king is to man as prince is to z woman

Computed using https://rare-technologies.com/word2vec-tutorial/
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Word2Vec II
Beware of data bias
Most similar words to Munich :

Munich_Germany , Dusseldorf , Berlin , Cologne , Puchheim_westward
z Many stock photos with “Puchheim westward of Munich”, used in gas price articles.

Most similar words to Berlin :

Munich , BBC_Tristana_Moore , Hamburg , Frankfurt , Germany
z Tristana Moore is a key BBC correspondent in Berlin.

Most similar words to Heidelberg :

CEO_Bernhard_Schreier , CFO_Dirk_Kaliebe , Würzburg , Heidleberg ,

Heidelberger_Druckmaschinen_AG
z CEO, CFO of Heidelberger Druckmaschinen. Würzburg – because of Koenig & Bauer?

Context of Munich

in Reuters News!

Computed using https://rare-technologies.com/word2vec-tutorial/
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Word2Vec and Word Embeddings
Strengths & Limitations

I Focused primarily on words, not on documents

I Captures certain word semantics surprisingly well

I Mostly preseves linguistic relations: plural, gender, language, . . .

(And thus very useful for machine translation)

I Requires massive training data

(Needs to learn projection matrixes of size N × d)

I Only works for frequent-enough words, unreliable on low-frequency words

I Does not distinguish homonyms, and is a�ected by training data bias

I How to fix, if it does not work as desired?

I Not very well understood yet [GL14; LG14b; LGD15], but related to matrix

factorization [PSM14]
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Summary
I We o�en need a Rd representation of documents.

I Text needs to be tokenized, maybe NLP analysis.

I Sparse representation allows using text search techniques.

I Similarity is o�en measured by Cosine (on sparse representations).

I TF-IDF normalization improves search and similarity results.

I Many heuristic choices (e.g., TF-IDF variant)

I Dense models (e.g., word2vec) are a recent hype

But: need huge training data, no guarantees, hard to fix if they do not work right,

mostly used for single word similarity and machine translation.
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Literature
Recommended literature:

I Vector space model and information retrieval:

Chapter 6 “Scoring, term weighting and the vector space model”

Chapter 7 “Computing scores in a complete search system”

Chapter 11 “Probabilistic information retrieval“

C. D. Manning, P. Raghavan, and H. Schütze

Introduction to information retrieval
Cambridge University Press, 2008

isbn: 978-0-521-86571-5

url: http://nlp.stanford.edu/IR-book/
I Word embeddings:

[Ben+03; RGP06; Mik+13; MK13; LM14; GL14; LC14; LG14a; PSM14; LGD15]
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What is clustering?
Core concepts
Divide data into clusters:

I Clusters not defined beforehand (otherwise: use classification)

I Similar objects should be in the same cluster

I Dissimilar objects in di�erent clusters

I Di�erent notions of (dis-) similarity

I Based on statistical properties such as:

I Connectivity

I Separation

I Least squared deviation

I Density
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What is clustering?
Clustering use examples
Usage examples:

I Customer segmentation:

Optimize ad targeting or product design for di�erent “focus groups”.

I Web visitor segmentation:

Optimize web page navigation for di�erent user segments.

I Data aggregation:

Represent many data points with a single (representative) example.

E.g., reduce color pale�e of an image

I Text collection organization:

Group text documents into (previously unknown) topics.
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Clustering algorithms
Different categories of algorithms

Paradigm:

I Distance

I Variance

I Density

I Connectivity

I Probability

I Subgraph

Properties:

I Partitions: strict, hierarchical, overlapping

I Outliers, or total clustering

I Hard (binary) assignment or so� (fuzzy) assignment

I Full dimensional or subspace

I Rectangular, spherical, or correlated

E. Schubert Advanced Topics in Text Mining 2017-04-17



Text Clustering Hierarchical Clustering 4: 4 / 81

Hierarchical Agglomerative Clustering I
Repeated merging of clusters
One of the earliest clustering methods [Sne57; Sib73; Har75; KR90]:

1. Initially, every object is a cluster

2. Find two most similar clusters, and merge them

3. Repeat (2) until only one cluster remains

4. Plot tree (“dendrogram”), and choose interesting subtrees

Many variations that di�er by:

I Distance / similarity measure of objects
I Distance measure of clusters (“linkage”)

I Optimizations
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Hierarchical Agglomerative Clustering II
Distance of objects
We first need distances of single objects.

Both Euclidean distance (the most common distance we use):

dEuclidean(x, y) =

√∑
d
(xd − yd)2 = ‖x− y‖2

and Manha�an distance (city block metric):

dManhattan(x, y) =
∑

d
|xd − yd| = ‖x− y‖1

are special cases of Minkowski norms (Lp distances):

dLp(x, y) =
(∑

d
|xd − yd|p

)1/p
= ‖x− y‖p

z Many more distance functions [DD09]!

‖x‖ usually refers to

the Euclidean norm.
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Hierarchical Agglomerative Clustering III
Distance of objects II
Instead of distances, we can also use similarities:

Cosine similarity:

cos(X,Y ) :=
X · Y
‖X‖ · ‖Y ‖

=

∑
i xiyi√∑

i x
2
i ·
√∑

i y
2
i

on L2 normalized data, this simplifies to:

cos(X,Y ) :=
‖X‖=1

‖Y ‖=1

X · Y =
∑
i

xiyi

z Careful: if we use similarities, large values are be�er

– with distances, small values are be�er.
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Curse of Dimensionality
Concentration of Distances
Curse of Dimensionality of Beyer et al. [Bey+99]

If lim
d→∞

Var

(
‖Xd‖

E[‖Xd‖]

)
= 0, then

Dmax −Dmin

Dmin
→ 0.

 0

 1

 2

 3

 4

 5

 6

 7

 1  10  100  1000

N
or

m
al

iz
ed

 d
is

ta
nc

e

Dimensionality

Normal distribution

Mean +- stddev Actual min Actual max

E. Schubert Advanced Topics in Text Mining 2017-04-17

Text Clustering Hierarchical Clustering 4: 8 / 81

Curse of Dimensionality II
Illustration: “shrinking” (?) hyperspheres [ZSK12] n-balls grow slower

than n-cubes
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Curse of Dimensionality III
Illustration: “shrinking” (?) hyperspheres II [ZSK12]
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Curse of Dimensionality IV
Summary
Due to the Curse of Dimensionality, distances become very similar.

I Usually at around 10–50 dimensions, this becomes a problem.

I Text usually has 10000+ dimensions (but mostly 0s – sparse)

Intrinsic dimensionality of text is still high!

I While some claim “cosine is be�er in high dimensionality” this is false

(because cosine
∼= Euclidean on the unit sphere)

I The signal-to-noise-ratio is essential [ZSK12]

I In text, we (naturally) have a lot of noise, because of typos and discrete input!

I Rankings can be more meaningful than scores [Hou+10]

I The Curse has many di�erent forms [ZSK12]

cos(X,Y ) =
‖X‖=1

‖Y ‖=1

X · Y =
∑

i
xiyi︸︷︷︸
± many tiny errors = a lot of noise
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Hierarchical Agglomerative Clustering IV
Distance of clusters I
Single-linkage: minimum distance

∼= maximum similarity

dsingle(A,B) := min
a∈A,b∈B

d(a, b) ∼= max
a∈A,b∈B

s(a, b)

Complete-linkage: maximum distance
∼= minimum similarity

dcomplete(A,B) := max
a∈A,b∈B

d(a, b) ∼= min
a∈A,b∈B

s(a, b)

Average-linkage (UPGMA): average distance
∼= average similarity

daverage(A,B) := 1
|A|·|B|

∑
a∈A

∑
b∈B

d(a, b)

Centroid-linkage: distance of cluster centers (Euclidean only)

dcentroid(A,B) := ‖µA − µB‖2
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Hierarchical Agglomerative Clustering V
Distance of clusters II
Mc�i�y (WPGMA): average of previous sub-clusters

Defined recursively, e.g., via Lance-Williams equation.

Average distance to the previous two clusters.

Median-linkage (Euclidean only): distance from midpoint

Defined recursively, e.g., via Lance-Williams equation.

Median is the halfway point of the previous merge.

Ward-linkage (Euclidean only): Minimum increase of squared error

dWard(A,B) := = |A|·|B|
|A∪B| ‖µA − µB‖

2

Mini-Max-linkage: Best maximum distance, best minimum similarity

dminimax(A,B) := min
c∈A∪B

max
p∈A∪B

d(c, p) ∼= max
c∈A∪B

min
p∈A∪B

s(c, p)
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Hierarchical Agglomerative Clustering VI
AGNES – Agglomerative Nesting [KR90]
AGNES, using the Lance-Williams equations [LW67]:

1. Compute the pairwise distance matrix of objects

2. Find position of the minimum distance d(i, j) (similarity: maximum similarity s(i, j))

3. Combine rows and columns of i and j into one using Lance-Williams update equations

d(A ∪B,C) = LanceWilliams (d(A,C), d(B,C), d(A,B))

using only the stored, known distances d(A,C), d(B,C), d(A,B).

4. Repeat from (2.) until only one entry remains

5. Return dendrogram tree
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Hierarchical Agglomerative Clustering VII
AGNES – Agglomerative Nesting [KR90] II
Lance-Williams update equation have the general form:

D(A ∪B,C) = α1d(A,C) + α2d(B,C) + βd(A,B) + γ|d(A,C)− d(B,C)|

Several (but not all) linkages can be expressed in this form (for distances):

α1 α2 β γ
Single-linkage 1/2 1/2 0 −1/2
Complete-linkage 1/2 1/2 0 +1/2

Average-group-linkage (UPGMA)
|A|

|A|+|B|
|B|

|A|+|B| 0 0

Mc�i�y (WPGMA) 1/2 1/2 0 0

Centroid-linkage (UPGMC)
|A|

|A|+|B|
|B|

|A|+|B|
−|A||B|
(|A|+|B|)2 0

Median-linkage (WPGMC) 1/2 1/2 −1/4 0

Ward
|A|+|C|

|A|+|B|+|C|
|B|+|C|

|A|+|B|+|C|
−|C|

|A|+|B|+|C| 0
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Hierarchical Agglomerative Clustering VIII
AGNES – Agglomerative Nesting [KR90] III
Example with complete linkage (= maximum of the distances):

Sca�er plot

A

B

C

D

E

F

0 1 2 3 4 5 6
0

1

2

3

4

5

Distance matrix

A B C D E F

A

B

C

D

E

F

0

0

0

0

0

0

0.71

0.71

5

5

2.92

2.92

2.5

2.5

3.54

3.54

5.70

5.70

3.61

3.61

3.20

3.20

4.24

4.24

2.55

2.55

2.69

2.69

1.58

1.58

0.5

0.5

1

1

1.12

1.12

2.92

2.5

3.61

3.20

2.55

2.69 0.5

1 1.12

2.92 3.61

2.69

1.12

0.71

5 5.70

3.54 4.24

5.70

4.24 1.584.24

2.69

5.70

Dendrogram

A B C D E F

1

2

3

4

5

6

We may need to merge

non-adjacent rows!

We don’t know the optimum

label positions in advance

E. Schubert Advanced Topics in Text Mining 2017-04-17



Text Clustering Hierarchical Clustering 4: 15 / 81

Hierarchical Agglomerative Clustering VIII
AGNES – Agglomerative Nesting [KR90] III
Example with single linkage (= minimum of the distances):

Sca�er plot

A

B

C

D

E

F

0 1 2 3 4 5 6
0

1

2

3

4

5

Distance matrix

A B C D E F

A

B

C

D

E

F

0

0

0

0

0

0

0.71

0.71

5

5

2.92

2.92

2.5

2.5

3.54

3.54

5.70

5.70

3.61

3.61

3.20

3.20

4.24

4.24

2.55

2.55

2.69

2.69

1.58

1.58

0.5

0.5

1

1

1.12

1.12

2.92

2.5

3.61

3.20

2.55

2.69 0.5

1 1.12

3.202.5

2.55

1

0.71

5 5.70

3.54 4.24

5

3.54 1.58

2.5

1.58

2.5

Dendrogram

A B C D E F

0.5

1

1.5

2

2.5

3

In this very simple example,

single and complete linkage

are very similar
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Hierarchical Agglomerative Clustering IX
Extracting clusters
At this point, we have the dendrogram – but not yet “clusters”.

z E.g., set a distance limit, or stop at k clusters.

Complexity analysis:

1. Computing the distance matrix: O(n2) time and memory.

2. Finding the maximum: O(n2) · i
3. Updating the matrix: O(n) · i
4. Number of iterations: i = O(n)

Total: O(n3) time and O(n2) memory!

Be�er algorithms can run in “usually n2
” time [Sib73; And73; Def77].

z Hierarchical clustering does not scale to large data, code optimization ma�ers [KSZ16].
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Hierarchical Agglomerative Clustering X
Benefits and limitations
Benefits:

I Very general: any distance / similarity (for text: cosine!)

I Easy to understand and interpret

I Dendrogram visualization can be useful

I Many variants

Limitations:

I Scalability is the main problem (in particular, O(n2) memory)

I Unbalanced cluster sizes (i.e., number of points)

I Outliers
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k-means Clustering
Core concepts
The k-means problem:

I Divide data into k subsets (k is a parameter)

I Subsets represented by their arithmetic mean in each a�ribute µC,d
I Optimize the least squared error SSQ :=

∑
C

∑
d

∑
xi∈C(xi,d − µC,d)2

History of least squares estimation (Legendre, Gauss):

https://en.wikipedia.org/wiki/Least_squares#History

I Squared errors put more weight on larger deviations

I Arithmetic mean is the maximum likelihood estimator of centrality

I Connected to the normal distribution

z k-means is a good choice, if we have k signals and normal distributed measurement error
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k-means Clustering II
Sum of Squares objective
The sum-of-squares objective:

SSQ :=
∑

C︸ ︷︷ ︸
every cluster

∑
d︸︷︷︸

× every dimension×

∑
xi∈C︸ ︷︷ ︸

every point

(xi,d − µC,d)2︸ ︷︷ ︸
squared deviation from mean

For every cluster C and dimension d, the arithmetic mean minimizes∑
xi∈C

(xi,d − µC,d)2
is minimized by µC,d =

1

|C|
∑

xi∈C
xi,d

For every point xi, we can choose the cluster C to minimize SSQ, too.

Note: sum of squares ≡ squared Euclidean distance:∑
d
(xi,d − µC,d)2 ≡ ‖xi − µC‖2 ≡ d2

Euclidean(xi, µC)

We can therefore say that every point is assigned the “closest” cluster, but we cannot use arbitrary

other distance functions in k-means (because the arithmetic mean only minimizes SSQ).

We can rearrange these sums

because of communtativity
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k-means Clustering III
The standard algorithm (Lloyd’s algorithm)
The standard algorithm for k-means [Ste56; For65; Llo82]:

1. Choose k points randomly
4

as initial centers

2. Assign every point to the least-squares closest center

3. Update the centers with the arithmetic mean

4. Repeat (2.)-(3.) until no point is reassigned anymore

This is not the most e�icient algorithm (despite everybody teaching this variant).

ELKI [Sch+15] contains ≈ 10 variants (e.g., Sort-Means [Phi02]; benchmarks in [KSZ16]).

The name k-means was first used by Mac�een for a slightly di�erent algorithm [Mac67].

k-means was invented several times, and has an interesting history [Boc07].

(2.) and (3.) both

minimize SSQ

4

or by any other rule, e.g., k-means++ [AV07] or predefined “seeds”
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k-means Clustering IV
The standard algorithm (Lloyd’s algorithm) II

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

k-means has converged

in the third iteration

with SSQ = 61.5
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k-means Clustering V
The standard algorithm (Lloyd’s algorithm) III

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Result with di�erent starting centroids.

k-means has converged

in the second iteration

with SSQ = 54.4
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k-means Clustering VI
The standard algorithm (Lloyd’s algorithm) IV

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Result with di�erent starting centroids.

k-means has converged

in the second iteration

with SSQ = 72.9
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k-means Clustering VII
Non-determinism & non-optimality
Most k-means algorithms

I do not guarantee to find the global optimum (would be NP-hard – too expensive)

I give di�erent local optima,
5

depending on the starting point

In practical use:

I data is never exact, or complete

I the “optimum”
6

result is not necessarily the most useful

z Usually, we gain li�le by finding the true optimum

z It is usually good enough to try a few random initializations and keep the “best”
6

5

In fact, the standard algorithm may fail to even find a local minimum [HW79].

6

Least squares, i.e., lowest SSQ – this does not mean it will actually give the most insight.
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k-means Clustering VIII
Complexity
In the standard algorithm:

1. Initialization is usually cheap, O(k) (k-means++: O(N · k · d) [AV07])

2. Reassignment is O(N · k · d)

3. Mean computation is O(N · d)

4. Number of iterations i ∈ 2Ω(
√
N)

[AV06] (but fortunately, usually i� N )

5. Total: O(N · k · d · i)

Worst case is superpolynomial, but in practice the method will usually run much be�er than n2
.

We can force a limit on the number of iterations, e.g., i = 100, with li�le loss in quality usually.

In practice, o�en the fastest clustering algorithm we have / use.
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k-means Clustering IX
k-means for text clustering
k-means cannot be used with arbitrary distances, but only with Bregman divergences [Ban+05].

Cosine similarity is closely connected to squared Euclidean distance (c.f. Assignment 2).

Spherical k-means [DM01] uses:

I Input data is normalized to have ‖xi‖ = 1

I At each iteration, the new centers are normalized to µ′C := ‖µC‖ = 1

I µ′C minimizes average cosine similarity [DM01]∑
xi∈C

〈
xi, µ

′
C

〉 ∼= |C| −∑
xi∈C

∥∥xi, µ′C∥∥2

I Sparse nearest-centroid computations in O(d′) where d′ is the number of non-zero values

I Result is similar to a SVD factorization of the document-term-matrix [DM01]
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k-means Clustering X
Choosing the “optimum” k for k-means
A key challenge of k-means is choosing k:

I Trivial to prove: SSQ
optimum,k ≥ SSQ

optimum,k+1.

z Avoid comparing SSQ for di�erent k or di�erent data (including normalization).

I SSQk=N = 0 — “perfect” solution? No: useless.

I SSQk may exhibit an “elbow” or “knee”: initially it improves fast, then much slower.

I Use alternate criteria such as Silhoue�e [Rou87], AIC [Aka77], BIC [Sch78; ZXF08].

z Computing silhoue�e is O(n2) – more expensive than k-means.

z AIC, BIC try to reduce overfi�ing by penalizing model complexity (= high k).

More details will come in evaluation section.

I Nevertheless, these measures are heuristics – other k can be be�er in practice!

I Methods such as X-means [PM00] split clusters as long as a quality criterion improves.
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k-means Clustering XI
Choosing the “optimum” k for k-means II

Toy “mouse” data set:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Best with k = 3:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Best with k = 5:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4
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k-means Clustering XI
Choosing the “optimum” k for k-means II
Best results for 25 initializations, k = 1 . . . 20:

 0
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 20

 25

 30

 35

 1  10
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qu
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Number of clusters k

Min Mean Max

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  10

Si
lh

ou
e

e

Number of clusters k

Min Mean Max Best SSQ

All tested measures either prefer 3 or 5 clusters.

Typical SSQ curve

Knee?Knee?

0.5 is not considered

to be a good Silhoue�e

k = 3 is best,

but k = 5 is similar
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k-means Clustering XII
Clusters changes are increasingly incremental
Convergence on Mouse data set with k = 3:
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k-means Clustering XIII
k-means benefits and drawbacks
Benefits:

I Very fast algorithm (O(k · d ·N), if we limit the number of iterations)

I Convenient centroid vector for every cluster

(We can analyze this vector to get a “topic”)

I Can be run multiple times to get di�erent results

Limitations:

I Cannot be used with arbitrary distances

I Di�icult to choose the number of clusters, k

I Does not produce the same result every time

I Sensitive to outliers (squared errors emphasize outliers)

I Cluster sizes can be quite unbalanced (e.g., one-element outlier clusters)
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Expectation-Maximization Clustering
From k-means to Gaussian EM
k-means can not handle clusters with di�erent “radius” well.

Toy “mouse” data set:
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Best 3-means:
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Best 5-means:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z could we estimate mean and radius?

z model the data with multivariate Gaussian distributions
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Expectation-Maximization Clustering
Iterative refinement
EM (Expectation-Maximization) is the underlying principle in Lloyd’s k-means:

1. Choose initial model parameters θ

2. Expect latent variables (e.g., cluster assignment) from θ and the data.

3. Update θ to maximize the likelihood of observing the data

4. Repeat (2.)-(3.) until a stopping condition holds

Recall Lloyd’s k-means:

1. Choose k centers randomly (θ: random centers)

2. Expect cluster labels by choosing the nearest center as label

3. Update cluster centers with maximum-likelihood estimation of centrality

4. Repeat (2.)-(3.) until change = 0
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Expectation-Maximization Clustering
Iterative refinement
EM (Expectation-Maximization) is the underlying principle in Lloyd’s k-means:

1. Choose initial model parameters θ

2. Expect latent variables (e.g., cluster assignment) from θ and the data.

3. Update θ to maximize the likelihood of observing the data

4. Repeat (2.)-(3.) until a stopping condition holds

Gaussian Mixture Modeling (GMM): [DLR77]

1. Choose k centers randomly, and unity covariance (θ = (µ1,Σ1, µ2,Σ2, . . . µk,Σk))

2. Expect cluster labels based on Gaussian distribution density

3. Update Gaussians with mean and covariance matrix

4. Repeat (2.)-(3.) until change < ε
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Gaussian Mixture Modeling I
Expectation-Maximization
Expectation-step: For every point p, and cluster center µi with covariance matrix Σi compute:

pdf(p, µi,Σi) :=
1√

(2π)d|Σi|
· e−

1
2((p−µi)TΣ−1

i (p−µi))

Estimate point weights (cluster membership)

wpi :=
pdf(p, µi,Σi)∑
j pdf(p, µj ,Σj)

w proportional to pdf
wpi ∝ pdf(p, µi,Σi)

Maximization step: Use weighted mean and weighted covariance to recompute cluster model.

µi,x = 1∑
p wpi

∑
p
wpipx

Σi,x,y = 1∑
p wpi

∑
p
wpi(px − µx)(py − µy)

weighted mean(X) / cov(X,Y )
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Gaussian Mixture Modeling II
Fitting multiple Gaussian distributions to data
Probability density function of a multivariate Gaussian:

pdf(p, µ,Σ) :=
1√

(2π)d|Σ|
· e−

1
2((p−µ)TΣ−1(p−µ))

If we constrain Σ we can control the cluster shape:

I We always want symmetric and positive semi-definite

I Σ covariance matrix: rotated ellipsoid (A)

I Σ diagonal (“variance matrix”): ellipsoid (B)

I Σ scaled unit matrix: spherical (C)

I Same Σ for all clusters, or di�erent Σi each

C

A

B
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Gaussian Mixture Modeling III
Understanding the Gaussian density
Multivariate normal distribution:

pdf(p, µ,Σ) :=
1√

(2π)d|Σ|
· e−

1
2((p−µ)TΣ−1(p−µ))

1-dimensional normal distribution:

pdf(x, µ, σ) :=
1√

(2π)σ2
· e−

1
2((x−µ)σ−2(x−µ))

Normalization (to a total volume of 1) and squared deviation from center

Compare this to Mahalanobis distance:

dMahalanobis(x, µ,Σ)2 := (x− µ)TΣ−1(x− µ)

z Σ/Σ−1
plays a central role here, the remainder is squared Euclidean distance!
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Gaussian Mixture Modeling IV
Inverse covariance matrix – Σ−1

Covariance matrixes are symmetric, non-negative on the diagonal, and can be inverted.

(This may need a robust numerical implementation.)

We can decompose this using

V ΛV −1 = Σ ≡ V Λ−1V −1 = Σ−1

where V contains the eigenvectors and Λ contains the eigenvalues.

z Interpret this decomposition as V ∼= rotation, Λ ∼= squared scaling!

(Recall foundations: PCA and SVD)
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Gaussian Mixture Modeling V
Inverse covariance matrix – Σ−1 II

Build Ω using ωi = 1/
√
λi = λ

− 1
2

i . Then ΩΩ = Λ−1
, and ΩT = Ω.

Σ−1 = V Λ−1V −1 = V ΩTΩV T = (ΩV T )TΩV T

d2
Mahalanobis

= (x− µ)TΣ−1(ΩV T )TΩV T (x− µ)

=
〈
ΩV T (x− µ),ΩV T (x− µ)

〉
=
∥∥ΩV T (x− µ)

∥∥2

z Mahalanobis ≈ Euclidean distance a�er PCA

E. Schubert Advanced Topics in Text Mining 2017-04-17

Text Clustering Gaussian Mixture Modeling 4: 38 / 81

Gaussian Mixture Modeling VII
Soft-assignment changes slower than k-means
Clustering mouse data set with k = 3:
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Expectation-Maximization Clustering
Clustering text data
We cannot use Gaussian EM on text:

I Text is not Gaussian distributed.

I Text is discrete and sparse, Gaussians are continuous.

I Covariance matrixes have O(d2) entries:

I Memory requirements (text has a very high dimensionality d)

I Data requirements (to reliably estimate the parameters, we need very many data points)

I Matrix inversion is even O(d3)

But the general EM principle can be used with other distributions.

For example: mixture of Bernoulli or multinomial distributions
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Mixture of Bernoulli Distributions
EM Clustering meets Bernoulli Naïve Bayes [MRS08]
The Bernoulli model uses boolean vectors, indicating the presence of terms.

A cluster i is modeled a weight αi and term frequencies qi,t.

Multivariate Bernoulli probability of a document x in cluster i:

P (x | i, qi) =
(∏

t∈x
qi,t

)(∏
t6∈x

1− qi,t
)

Mixture of clusters 1 . . . k with weights α1 . . . αk:

P (x | α, q) =
∑k

i=1
αi

(∏
t∈x

βi,t

)(∏
t6∈x

1− βi,t
)

Note: when implementing this, we need a Laplacian correction to avoid zero values!
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Mixture of Bernoulli Distributions
Probabilistic generative model
This equation arises, if we assume the data is generated by:

1. Choose a cluster i with probability αi

2. For every token t, include it in the document with probability βi,t

This is a very simple model:

I No word frequency

I No word order

I No word correlations

If we would use this to really generate documents, they would be gibberish.

But naïve Bayes classification uses this, too, and it o�en works!
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Mixture of Bernoulli Distributions
Expectation-Maximziation algorithm
To learn the weights α, β we can employ EM:

1. Choose αi = 1/k, and choose k documents as initial βi (similar to k-means).

2. Expectation step:

P (x ∈ Ci | α, β) =
αi
(∏

t∈x βi,t
) (∏

t6∈x 1− βi,t
)

∑k
j=1 αj

(∏
t∈x βj,t

) (∏
t6∈x 1− βj,t

)
3. Maximization step:

βi,t =

∑
x P (x ∈ Ci | α, β)1(t ∈ x)∑
x P (x ∈ Ci | α, β)

αi =

∑
x P (x ∈ Ci | α, β)

N

4. Repeat (2.)-(3.) until change < ε.

Probability of a

document in cluster i
containing token t

1(c) = 1 if c true else 0

What share of all

documents is in the cluster?
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Mixture of Bernoulli Distributions
Expectation-Maximziation algorithm
To learn the weights α, β we can employ EM:

1. Choose αi = 1/k, and choose k documents as initial βi (similar to k-means).

2. Expectation step:

P (x ∈ Ci | α, β) ∝ αi
(∏

t∈x
βi,t

)(∏
t6∈x

1− βi,t
)

3. Maximization step:

βi,t =

∑
x P (x ∈ Ci | α, β)1(t ∈ x)∑
x P (x ∈ Ci | α, β)

αi ∝
∑

x
P (x ∈ Ci | α, β)

4. Repeat (2.)-(3.) until change < ε.

Probability of a

document in cluster i
containing token t

1(c) = 1 if c true else 0

What share of all

documents is in the cluster?
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Mixture of Bernoulli Distributions
From Bernoulli to multinomial
The Bernoulli model is simple, but it ignores quantitative information completely.

The closest distribution that uses quantity is the multinomial distribution.

Again, this is similar to multinomial naïve Bayes classification.
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Mixture of Multinomial Distributions
Clustering text data
The multinomial mixture model:

P (x | α, β) :=

k∑
j=1

αj
len(x)!∏d
t=1 tft,x!

d∏
t=1

β
tft,x
t,j∑k

sum of multinomial distributions (“clusters”, or “topics”, index j = 1 . . . k)

αj relative size of topic j (α is a vector of length k)

len!∏
tf ! number of permutations of the document with the same word vector∏
βtf

probability of seeing this word vector in topic j (β is a k × d matrix)

βt,j frequency of word t in topic j
tf number of times the term occurred in the document (document-term-matrix)
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Mixture of Multinomial Distributions
Probabilistic generative model
The model assumes our data set was generated by a process like this:

1. Sample a topic distribution α

2. For every topic t, sample a word distribution βt
3. For every document d

3.1 Sample a topic t from α
3.2 Sample l words from the word distribution βt

Note: this is not what we do, but our underlying assumptions.
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Mixture of Multinomial Distributions
Probabilistic generative model II
We want to apply Bayes’ rule:

P (α, β | X) ∝ P (X | α, β)P (α)P (β)

Because α and β are independent, and P (X) can be treated as constant.

P (α, β | X) ∝

∏
x∈X

k∑
j=1

αj

d∏
t=1

β
tft,x
t,j

 k∏
j=1

αλα−1
j

k∏
j=1

d∏
t=1

β
λβ−1
t,j

By disregarding everything that does not depend on α, β.

Unfortunately, maximizing this directly is in general intractable.
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Mixture of Multinomial Distributions
Back to Expectation Maximization
Expectation step:

P (x ∈ j | α, β) ∝ αj
∏d

t=1
β

tft,x
t,j

by removing shared terms independent of j

Maximization step:

αj ∝ λα − 1 +
∑
x∈X

P (x ∈ j | α, β)

βt,j ∝ λβ − 1 +
∑
x∈X

tft,x P (x ∈ j | α, β)

This is called PLSA/PLSI [Hof99], and will be discussed in more detail in the next chapter.
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Mixture of Multinomial Distributions
Results with Expectation Maximization
Results reported with this approach are mixed:

I Sensitive to initialization [MRS08; MS01]

because there are many local optima. E.g., use k-means result as starting point.

I Sensitive to rare words

I Converges fast to binary assignments, usually

(not necessarily good, tends to get stuck in local optima because of this)

Many more algorithms use this general EM optimization procedure!

E.g., for clustering web site navigation pa�erns (clickstreams) [YH02; Cad+03; JZM04]

E. Schubert Advanced Topics in Text Mining 2017-04-17

Text Clustering Biclustering 4: 49 / 81

Biclustering & Subspace Clustering
Clustering attributes and variables
Popular in gene expression analysis.

I Every row is a gene

I Every column is a sample

}
or transposed

I Only a few genes are relevant

I No semantic ordering of rows or columns

I Some samples may be contaminated

I Numerical value may be unreliable, only “high” or “low”

z Key idea of biclustering: [CC00]

Find a subset of rows and columns (submatrix, a�er permutation),

such that all values are high/low or exhibit some pa�ern.
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Biclustering
Bicluster patterns [CC00]
Some examples for bicluster pa�erns:
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Clusters may overlap in rows and columns!

Pa�erns will never be this ideal, but noisy!

Many algorithms focus on the constant pa�ern type only, as there are O(2N ·d) possibilities.
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Subspace Clustering
Density-based clusters in subspaces
Subspace clusters may be visible in one projection, but not in another:
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Subspace Clustering
Density-based clusters in subspaces
Subspace clusters may be visible in one projection, but not in another:
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Popular key idea:

I Find dense areas in 1-dimensional projections

I Combine subspaces as long as the cluster remains dense

Examples: CLIQUE [Agr+98], PROCLUS [Agg+99], SUBCLU [KKK04]

There also exist “correlation clustering”, for rotated subspaces.
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Biclustering & Subspace Clustering
Relationship to text clustering and topic modeling
While these algorithms have similar ideas to text clustering,

there are some subtle di�erences that make them not work well with text:

I Text is sparse, and we need to treat 0 specially

(We do not want to find a cluster “all a�ributes are zero, except for a few”)

I We do not see “dense” regions of non-zero values

I We do not have the biological notion of “highly expressed” for genes

What is a high value in TF-IDF? Everything except 0?

However, on some special (non-natural) text, these methods may work, e.g.:

I Tags / Keywords

I Log files

E. Schubert Advanced Topics in Text Mining 2017-04-17



Text Clustering Frequent Itemset Mining 4: 53 / 81

Frequent Itemset Mining
Finding co-occurrences
Market basket analysis:

I Which items are frequently bought together?

I If a customer has bought A and B, should I o�er C?

I Cross-marketing opportunities?

I Optimize product arrangement in the store?

z For more details on the market basket analysis scenario, see KDD lecture!
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Frequent Itemset Mining
Transaction data
Data model of frequent itemset mining:

I Items I = {i1, . . . , iK}: literals, e.g., products or product groups

I Itemset: a set X ⊆ I of items

I k-itemset: itemset of length |X| = k

I Transactions T = {X1, . . . , XN}, X ⊆ I : observed itemsets and stored in the Database
I Support of an itemset X : |{Xi ∈ T | X ⊆ Xi}|

Notes:

I itemsets are usually kept sorted for e�iciency

I items are usually abstracted to product types, e.g., Milk, rather than brands and package sizes

I quantity information is usually not used
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Frequent Itemset Mining
Combinatorial explosion
Too many possibilities (2K ):

∅

{A} {B}

{A,B}

∅

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

∅

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}
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Frequent Itemset Mining
Combinatorial explosion
Too many possibilities (2K ):

∅

{A} {B} {C} {D} {E}

{A,B} {A,C} {A,D} {A,E} {B,C} {B,D} {B,E} {C,D} {C,E} {D,E}

{A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

{A,B,C,D} {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E}

{A,B,C,D,E}
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Frequent Itemset Mining
APRIORI [AS94]
Incremental construction (with a minimum support threshold):

1. Find frequent 1-itemsets by counting.

2. Given the k-itemsets, find the k + 1-itemsets.

For this, generate as few candidates as possible using monotonicity:

I Support is monotone decreasing: Support(X ∪ {i}) ≤ Support(X)
I Therefore, Support(X = {x1, . . . , xk+1}) ≤ mini Support(X \ {xi}) and

X \ {xi} 6∈ k-itemsets⇒ Support(X \ {xi}) < minSupp⇒ Support(X) < minSupp

I Optimization: only combine itemsets which agree on the first k − 1 items:

{x1, . . . , xk−1, xk} ∪ {x1, . . . , xk−1, x′k} = {x1, . . . , xk−1, xk, x′k}
I Optimization: keep everything sorted, then {x1, . . . , xk−1, _} are sequential

I Check if all other subsets {x1, . . . , xi−1, xi+1, . . . , xk} ∈ k-itemsets for i = 1 . . . k − 2

3. Use a single scan of the database for each k, count support of candidates

4. Discard candidates with too li�le support

5. Stop if no more itemsets can be found in the next round (|k + 1-itemsets| < k + 2)
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Frequent Itemset Mining
Combinatorial explosion
Pruning the search space with monotonicity: if {A} is not frequent, we can prune

∅

{A} {B} {C} {D}

{A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}
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Frequent Itemset Mining Example
NetFlix data
2 GB of movie ratings from NetFlix, ca. 2006.

Simplify: only 5 star ratings⇒ 23 million items in 480189 transactions (users)

But: even with minimum support 1000, we get billions of frequent itemsets!

Maximum supported k-itemsets:

k = 1 96535 Lord of the Rings: The Two Towers

k = 2 77878 above + Lord of the Rings: The Fellowship of the Ring

k = 3 66083 above + Lord of the Rings: The Return of the King

k = 4 43177 above + Lord of the Rings: The Two Towers: Extended Edition

k = 5 40123 above + Lord of the Rings: The Fellowship of the Ring: Extended Edition

k = 6 36267 above + Lord of the Rings: The Return of the King: Extended Edition

k = 7 22429 above + Star Wars: Episode V: The Empire Strikes Back

k = 8 18789 above + Star Wars: Episode IV: A New Hope

k = 9 16497 above + Star Wars: Episode VI: Return of the Jedi

k = 10 12241 above + Raiders of the Lost Ark
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Frequent Itemset Mining
Combinatorial explosion – Example
Number of frequent itemsets (logscale!) depending on minimum support:

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000
100

102

104

106

108

Minimum Support

#
F

r
e
q

u
e
n

t
I
t
e
m

s
e
t
s

E. Schubert Advanced Topics in Text Mining 2017-04-17

Text Clustering Frequent Itemset Mining 4: 59 / 81

Frequent Itemset Mining
Combinatorial explosion – Example
E�ect of APRIORI optimizations on the search space:
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All Itemsets
Naive-pairwise 5000x

Prefix-Join 5000x
Pruning 5000x
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Frequent Itemset Mining
Combinatorial explosion – Example
E�ect of minimum support on the search space:
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Frequent Itemset Mining
FP-Growth [HPY00]
Key-ideas of FP-Growth:

I many itemsets are duplicate or similar

I a prefix-tree-like aggregation can exploit redundancy

I the tree can o�en be held in main memory even when the database cannot

I find frequent pa�erns from the aggregated tree via projection (see KDD lecture)

E.g., transactions {A,B,C,D} × 3, {A,B,C,E} × 2, {A,E} × 2, and {D} × 1:

∅:8
A:7

B:5 C :5

D:3

E:2

E:2

D:1

The FP-tree is a compressed summary of the transaction database.
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Frequent Itemset Mining
Text and transactions
Comparison to text:

I item ∼ token (word)

I itemset ∼ binary term vector

I transactions ∼ documents

z Use frequent itemset mining to find pa�erns in text?

Does not work well on natural text: common words are frequent, interesting words are rare.

⇒ frequent itemsets involve mostly frequent words

On non-standard text such as tags, log files, etc. this can work well!
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Evaluation of Clustering
Different kinds of evaluation
We can distinguish between four kinds of evaluation:

I Unsupervised evaluation (usually based on distance / deviation)

Statistics such as SSQ, Silhoue�e, Davies-Bouldin, . . .

I Supervised evaluation based on labels

Indexes such as Adjusted Rand Index, Purity, . . .

I Indirect evaluation

Based on the performance of some other (usually supervised) algorithm in a later stage

E.g., how much does classification improve, if we use the clustering as feature

I Expert evaluation

Manual evaluation by a domain expert
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Unsupervised Evaluation of Clusterings
Underlying principles
Recall the basic idea of distance-based clustering algorithms:

I Items in the same cluster should be more similar

I Items in other clusters should be less similar

z compare the distance within the same cluster to distances to other clusters

Some simple approaches:

MeanDistance(C) := 1
N

∑
Ci

∑
x∈Ci

d(x, µCi)

MeanSquaredDistance(C) := 1
N

∑
Ci

∑
x∈Ci

d2(x, µCi)

RMSD(C) :=

√
1
N

∑
Ci

∑
x∈Ci

d2(x, µCi)
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Variance-based Evaluation
Explained Variance I
Variance is proportional to the pairwise deviations:

VarX = E[X2]− E[X]2 = 1
N

∑
x
x2 −

(
1
N

∑
x
x
)2

= 1
N

∑
x
x2 − 1

N

∑
x
x · 1

N

∑
y
y

= 1
N

∑
x
x2 − 1

N2

∑
x,y
xy

= 1
2N2

(
N
∑

x
x2 +N

∑
y
y2 − 2

∑
x,y
xy
)

= 1
2N2

∑
x,y

(
x2 − 2xy + y2

)
= 1

2N2

∑
x,y

(x− y)2

z 2N2 VarX =
∑

x,y
(x− y)2
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Variance-based Evaluation
Explained Variance II
We can decompose the variance for clusters C1, . . . , Ck:

2N2 VarX =
∑

x,y
(x− y)2

=
∑

x

∑
y
(x− y)2

︸ ︷︷ ︸
Total Sum of Squares (TSS) =

=
∑

Ci

∑
x,y∈Ci

(x− y)2︸ ︷︷ ︸
within cluster Ci︸ ︷︷ ︸

Within Cluster Sum of Squares (WCSS)

+
∑

Ci 6=Cj

∑
x∈Ci,y∈Cj

(x− y)2︸ ︷︷ ︸
between clusters Ci,Cj︸ ︷︷ ︸

+ Between Cluster Sum of Squares (BCSS)

z Because total sum of squares TSS is constant, minimizing WCSS = maximizing BCSS

Explained variance := BCSS

/
TSS = (TSS −WCSS)

/
TSS ∈ [0, 1]

Note: k-means tries to find a local optimum of WCSS.

Note: Ward-linkage joins clusters with least increase in WCSS.
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Silhouette
Distance to second nearest cluster [Rou87]
Define the mean distance of x to its own cluster, and to the closest other cluster:

a(x ∈ Ci) := meany∈Ci,y 6=x d(x, y)

b(x ∈ Ci) := minCj 6=Ci meany∈Cj d(x, y)

The silhoue�e width of a point x (can be used for plo�ing) then is:

s(x) := b(x)−a(x)
max{a(x),b(x)}

The silhoue�e of a clustering C then is:

Silhoue�e(C) := meanx s(x)

Silhoue�e: 1 if a� b, 0 if a = b, and -1 if a� b.
An average Silhoue�e of > 0.5 is considered “reasonable”, > 0.7 is “strong”.
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Silhouette
Challenges with Silhouette

I The complexity of Silhoue�e is: O(n2)
⇒ does not scale to large data sets.

Simplified Silhoue�e: use distances to cluster centers instead of average distances, O(n · k).

I When a cluster has a single point, a(x) is not defined.

Rousseeuw [Rou87] suggests to use s(x) = 0 then.

I Which distance should we use, e.g., with k-means – Euclidean, or squared Euclidean?

I In high-dimensional data, a(x)→ b(x) due to the curse of dimensionality. Then s(x)→ 0
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Davies-Bouldin Index
Scatter vs. separation [DB79]
Let the sca�er of a cluster Ci be (recall Lp-norms):

Si :=
(

1
|Ci|

∑
x∈Ci

‖x− µCi‖
p
p

)1/p

Let the separation of clusters be:

Mij :=
∥∥µCi − µCj∥∥p

The similarity of two clusters then is defined as:

Rij :=
Si+Sj
Mij

Clustering quality is the average maximum similarity:

DB(C) := meanCi maxCj 6=Ci Rij

A small Davies-Bouldin index is be�er, i.e., Si + Sj �Mij , sca�er� distance

Power mean (with power p) of

(‖x− y‖p)
p =

∑
i(xi − yi)

p

For p = 2, Si is standard deviation,

Mij is the Euclidean distance!
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Other Internal Clustering Indexes
Many more indexes
There have been many more indexes proposed over time:

I Dunn index: cluster distance / maximum cluster diameter [Dun73; Dun74]

I Calinski-Harabasz variance ratio criterion [CH74]:

BCSS/(k − 1)

WCSS/(N − k)
=
N − k
k − 1

BCSS

WCSS

I Gamma and Tau: P (within-cluster distance < between-cluster distance ) [BH75]

I C-Index: sum of within-cluster distances / same number of smallest distances [HL76]

I PBM Index: distance to cluster center / distance to total center [PBM04]

I DBCV: Density based cluster validation [Mou+14]

I . . .
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Unsupervised Cluster Evaluation
Examples: Mouse data
Revisiting k-means on the mouse data:
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Unsupervised Cluster Evaluation
Examples: Tutorial’s Wikipedia data set
Revisiting k-means on the Wikipedia data set (c.f., tutorials):
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Supervised Cluster Evaluation
Evaluation with a “ground truth”
External evaluation measures assume we know true clusters.

In the following, every point has a cluster C(x) and a true class K(x).

The “raw data” (e.g., vectors) will not be used.

Popular in literature to compare algorithms.

O�en, classification data is used, and it is assumed that good clusters = the classes.

O�en not usable with real data – no labels available.

Sometimes, we can at least label some data, or treat some properties as potential labels,

then choose the clustering that makes “most sense”.
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Supervised Cluster Evaluation
Evaluation with a “ground truth” II
The matching problem:

I Clusters C are usually enumerated 1, 2, 3, . . . , k

I True classes K are usually labeled with meaningful classes

I Which C is which class K?

z Clustering is not classification, we cannot evaluate it the same way

I What if there are more clusters than classes?

I What if a cluster contains two classes?

I What if a class contains two clusters?

To overcome this

I Choose the best (C,K) matching with, e.g., the Hungarian algorithm (uncommon)

I Compare every cluster C to every class K
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Supervised Cluster Evaluation
Purity, Precision and Recall
A simple measure popular in text clustering (but not much in “other” clustering):

Purity(Ci,K) := maxKj
|Ci∩Kj |
|Ci|

Purity(C,K) := 1
N

∑
i

|Ci|Purity(Ci,K) =
1

N

∑
i

maxKj |Ci ∩Kj |

⇒ A cluster, which only contains elements of class Kj has purity 1
z similar to “precision” in classification

But: every document is its own cluster has purity 1, is this really optimal?

We could also define a “recall” equivalent as maxKi |Cj ∩Ki|/|Ki|.
It works even worse: everything in a single cluster is optimal.
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Supervised Cluster Evaluation
Pair-counting: classifying as related
Many cluster evaluation measures are based on pair-counting.

If (and only if) i and j are in the same cluster, then (i, j) is a pair.

This gives us a binary, classification-like problem:

C(i) = C(j): pair C(i) 6= C(j): no pair

K(i) = K(j) pair true positive (a) false negative (c)

K(i) 6= K(j) no pair false positive (b) true negative (d)

Objects are a pair if they are related

⇒ we are predicting which objects are related, and which are not

subject to the transitivity constraint: (i, j) ∧ (j, k)⇒ (i, k)

E. Schubert Advanced Topics in Text Mining 2017-04-17

Text Clustering Evaluation 4: 76 / 81

Supervised Cluster Evaluation
Pair-counting measures

C(i) = C(j): pair C(i) 6= C(j): no pair

K(i) = K(j) pair true positive (a) false negative (c)

K(i) 6= K(j) no pair false positive (b) true negative (d)

Precision = a
a+b Recall = a

a+c

Rand index [Ran71] = a+d
a+b+c+d = Accuracy

Fowlkes-Mallows [FM83] =
√

Precision · Recall = a
/√

(a+ b) · (a+ c)

Jaccard = a
a+b+c

F1-Measure =2Precision·Recall

Precision+Recall
= 2a

2a+b+c

Fβ-Measure = (β2+1)·Precision·Recall

β2·Precision+Recall

Adjusted Rand Index = Rand index−E[Rand index]
Optimal Rand index−E[Rand index]
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Supervised Cluster Evaluation
Mutual Information: Information-theoretic Evaluation [Mei03; Mei05; Mei12]
Mutual Information:

I(C,K) =
∑

i

∑
j
P (Ci ∩Kj) log

P (Ci ∩Kj)

P (Ci) · P (Kj)

=
∑

i

∑
j

|Ci ∩Kj |
N

log
N |Ci ∩Kj |
|Ci| · |Kj |

Entropy (c.f. preliminaries)

H(C) =−
∑

i
P (Ci) logP (Ci) = −

∑
i

|Ci|
N

log
|Ci|
N

= I(C,C)

Normalized Mutual Information (NMI):
7

NMI(C,K) =
I(C,K)

(H(C) +H(K))/2
=
I(C,K) + I(K,C)

I(C,C) + I(K,K)

Using log a
b

=− log b
a

7

There exist at least 5 variations.
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Supervised Cluster Evaluation
Other measures and variants
Some further evaluation measures:

I Adjustment for chance is general principle,

Adjusted Index = Index−E[Index]
Optimal Index−E[Index]

For example Adjusted Rand Index [HA85] or Adjusted Mutual Information [VEB10]

I B-Cubed evaluation [BB98]

I Set matching purity [ZK01] and F1 [SKK00]

I Edit distance [PL02]

I Visual comparison of multiple clusterings [Ach+12]

I Gini-based evaluation [Sch+15]
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Supervised Cluster Evaluation
Examples: Mouse data
Revisiting k-means on the mouse data:
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On this toy data set, unsupervised methods predicted K = 3. go back
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Supervised Cluster Evaluation
Examples: Tutorial’s Wikipedia data set
Revisiting k-means on the Wikipedia data set (c.f., tutorials):

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  10  100

Ja
cc

ar
d

Number of clusters k

Min Mean Max Best SSQ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  10  100

A
R

I

Number of clusters k

Min Mean Max Best SSQ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  10  100

N
M

I J
oi

nt

Number of clusters k

Min Mean Max Best SSQ

The best k = 5 matches the true number of clusters in this data set.

Unsupervised measures would have preferred k = 2. go back
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Text Clustering
Conclusions
Clustering text data is hard because:

I Preprocessing (TF-IDF etc.) has major impact

(But we do not know which preprocessing is “correct” or “best”)

I Text is high-dimensional, and our intuition of “distance” and “density” do not work well

I Text is sparse, and many clustering assume dense, Gaussian data.

I Text is noisy, and many documents may not be part of a cluster at all.

I Some cases can be handled with biclustering or frequent itemset mining.

I The (proper) evaluation of clustering is very di�icult: [JD88]

The validation of clustering structures is the most di�icult and frustrating part of
cluster analysis.
Without a strong e�ort in this direction, cluster analysis will remain a black art
accessible only to those true believers who have experience and great courage.

z We need methods designed for text: topic modeling
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Topic Modeling
Motivation
Find the latent structure in a text corpus that:

I resembles “topics” (also “concepts”)

I best summarize the collection

I is based on statistical pa�erns

I are obscured by synonyms, homonyms, stopwords, . . .

I may overlap

Similar to clustering, but with a slightly di�erent “mindset”:

I In clustering, the emphasis is on the data points / documents

I In topic modeling, the emphasis is on the topics / clusters themselves
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Literature
General introduction to LDA:

D. M. Blei. “Probabilistic topic models”. In: Commun. ACM 55.4 (2012), pp. 77–84

Lecture by David Blei:

http://videolectures.net/mlss09uk_blei_tm/

Probabilistic graphical modeling textbook:

D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Techniques. MIT Press,

2009. isbn: 978-0-262-01319-2

Topic modeling chapter (17) of this textbook:

C. Zhai and S. Massung. Text Data Management and Analysis: A Practical Introduction to
Information Retrieval and Text Mining. New York, NY, USA: Association for Computing Machinery

and Morgan & Claypool, 2016. isbn: 978-1-97000-117-4
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LSI/LSA: Topics via Matrix Factorization
Latent Semantic Indexing (LSI) [Fur+88; Dee+90] was developed to improve information retrieval.
Also called Latent Semantic Analysis (LSA).

In information retrieval, synonymy and polysemy are a challenge:

I exact search will not find synonyms

I exact search will include polynyms and homonyms

Idea: identify “factors” that can contain multiple words, or parts of a word

Factors are a lower-dimensional representation of the document.

Factor analysis of the document-term matrix:

I similarity of words based on the documents they cooccur in

I similarity of documents based on the words they contain
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Topics via Matrix Factorization
Recall Singular Value Decomposition (SVD):

0
0

A

=

U

×
Σ

×
V T

I A: document-term matrix

I U : document-topic map (“topic distribution”)

I Σ : topic importance

I V : term-topic map (V T
: “term distribution”)

By truncating the matrix to k topics, we get the best (least-squares) approximation.
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Topics via Matrix Factorization II
Complexity of SVD on a m× n matrix is: O(min{mn2,m2n}) = O(mn ·min{m,n})

We can approximate this in O(k2 ·min{m,n}) using Monte-Carlo sampling [FKV04]

if we only need k components, to be more e�icient.

z If we do a stochastic approximation, can we use a probabilistic model directly?

U ∼ a topic distribution for every document

V T ∼ a word distribution for every topic

z model these as probabilities P (Tk | di) and P (wj | Ti)

Note: SVD does not yield probabilities, but factors can contain negative values.
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Topic Modeling
From Matrix Factors to Topic Models

cat dog

mouse bird

elephant lion

Topic 1

computer

so�ware

mouse Twi�er

Topic 2

The cat

chases a

mouse.

The com-

puter is con-

trolled by a

mouse.

Twi�er’s icon

is a bird.
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Topic Modeling
Probabilistic Mathematical Model
Basic idea of probabilistic topic modeling:

Every document di is a mixture of topics Tk (with θi,k ≥ 0):∑
k
P (di ∈ Tk) =

∑
k
θi,k︸︷︷︸

“topic distribution” of document i

= 1

Every word wi,j is drawn from one of the documents’ topics:

P (wi,j) =
∑

k
P (wi,j | di ∈ Tk)P (di ∈ Tk) =

∑
k
ϕk(wi,j)︸ ︷︷ ︸

“word distribution” of topic k

θi,k
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Probabilistic Topic Modeling
pLSI: probabilistic Latent Semantic Indexing [Hof99b; Hof99a]

θd zdi wdi

each word i
each document d

Where zdi is the topic of the ith word in document d.

This assumes conditional independence given an unobserved topic t: [BNJ03]

P (w, d) = P (d)
∑
t

P (w | t)P (t | d)

z See the EM chapter for an EM-algorithm for the multinomial distribution.

Prior Hidden var. Observed var. Dependency Repeated element
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Probabilistic Topic Modeling
Probabilistic generative model
The model assumes our data set was generated by a process like this:

1. For every topic t, sample a word distribution ϕt

2. For every document d, sample a topic distribution θd
3. For every document d, generate l words i = 1 . . . l:

3.1 Sample a topic zdi from θd
3.2 Sample a word wdi from the distribution ϕzdi

Note: this is not what we do, but our underlying assumptions.

E. Schubert Advanced Topics in Text Mining 2017-04-17



Topic Modeling Introduction 5: 10 / 25

Probabilistic Topic Modeling
Likelihood of PLSI
In PLSI, we model a document d as mixtures of k topics:

P (w | d)︸ ︷︷ ︸
Word w in

document (model) d

=
∑

t
θd,t︸︷︷︸

Weight of topic t
in document d

ϕt,w︸︷︷︸
Prob. word w

in topic t

logP (d)︸ ︷︷ ︸
Loglikelihood

of document d

=
∑

w
log P (w | d)

logP (D)︸ ︷︷ ︸
Loglikelihood

of all documents

=
∑

d
logP (d)

logP (D) =
∑

d

∑
w

log
[∑

t
θd,t ϕt,w

]
Log-loss function

to maximize
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Probabilistic Topic Modeling
EM-Algorithm for PLSI
Expectation-Step (estimate zd,w from previous θ, ϕ):

P (zd,w= t)︸ ︷︷ ︸
Prob. that word w

is in topic t

∝ θd,t︸︷︷︸
Weight of topic t
in document d

ϕt,w︸︷︷︸
Prob. word w

in topic t

s.t. ∀d,w :
∑

t
P (zd,w= t) = 1

Maximization-Step (optimize θ, ϕt,w from zd,w):

θd,t ∝
∑

w
dfw,d P (zd,w = t) s.t. ∀d :

∑
t
θd,t = 1

ϕt,w ∝
∑

d
dfw,d P (zd,w = t) s.t. ∀t :

∑
w
ϕt,w = 1

Note: because of θd, which depends on the document d,

the topic estimation of a word can be di�erent in di�erent documents!

This is the Maximum-Likelihood Estimation (MLE).

Normalize to a proper

probability distribution
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Probabilistic Topic Modeling
Incorporating prior knowledge
PLSI will model all words, including stopwords!

This causes some problems, we therefore can:

I Remove stopwords

I Add a “background” topic (c.f. [ZM16])

I Use Maximum-a-posterior (MAP) estimation, with a prior word distribution

ϕt,w ∝
∑

d
dfw,d P (zd,w = t) + µϕ′w s.t. ∀t :

∑
w
ϕt,w = 1

Where µ ∈ [0;∞] controls the strength of prior information,

and ϕ′ is the prior word distribution. [ZM16]
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Probabilistic Topic Modeling
LDA: Latent Dirichlet Allocation [BNJ01; BNJ03; Ble12]

α θd zdi wdi

ϕkβ

each word i

each topic k

each document d

Prior Hidden var. Observed var. Dependency Repeated element

For every word, we first draw a topic zdi, then draw a word wdi from this topic.

Topic and word distributions use “sparse” Dirichlet distributions.
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Latent Dirichlet Allocation
Generative Process of LDA
LDA assumes, documents are generated as follows:

1. For each document d, draw a topic distribution θd from a Dirichlet distribution

θd ∼ Dirichlet(α).

2. For each topic k, draw a word distribution ϕk from a Dirichlet distribution

ϕk ∼ Dirichlet(β).

3. For each word wdi in each document d draw a topic zdi from the multinomial θd

zdi ∼ Discrete(θd).

4. Draw a word from the multinomial ϕzdi

wdi ∼ Discrete(ϕzdi).
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Latent Dirichlet Allocation
Dirichlet Distribution
The Dirichlet prior of LDA – density with k = 3, α > 1:

But: we will be using α < 1, where this distribution becomes sparse.

PD Image from Wikipedia, https://commons.wikimedia.org/wiki/File:Dirichlet_distributions.png
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Latent Dirichlet Allocation
Dirichlet Distribution
The Dirichlet prior of LDA – samples with k = 20, α = 0.2
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Latent Dirichlet Allocation
Likelihood of LDA
LDA adds the Dirichlet prior to model the likeliness of word and topic distributions.

logP (d)︸ ︷︷ ︸
Loglikelihood

of document d

=

∫ ∑
w

log
∑

t
θd,t︸︷︷︸

Weight of topic t
in document d

ϕt,w︸︷︷︸
Prob. word w

in topic t

P (ϕt | α) dϕt︸ ︷︷ ︸
Likelihood of

word distribution

logP (D) =

∫ ∑
d

∑
w

log
[∑

t
θd,t ϕt,w

]∏
t
P (ϕt | α) dϕ1 · · · dϕk

A model is be�er if the word distributions match our Dirichlet prior be�er!

E. Schubert Advanced Topics in Text Mining 2017-04-17

Topic Modeling Introduction 5: 17 / 25

Latent Dirichlet Allocation
Computation of LDA
We do not generate random documents, but we need to compute the likelihood of a document,

and optimize (hyper-) parameters to best explain the documents.

We cannot solve this exactly, but we need to approximate this.

I Variational inference [BNJ01; BNJ03]

I Gibbs sampling [PSD00; Gri02]

I Expectation propagation [ML02]

I Collapsed Gibbs sampling [GS04]

I Collapsed variational inference [TNW06]

I Sparse collapsed Gibbs sampling [YMM09]

I Metropolis-Hastings-Walker sampling [Li+14]
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Gibbs Sampling
Monte-Carlo Methods
We need to estimate complex functions that we cannot handle analytically.

Estimates of a function f(x) usually look like this:

E[f(x)] =
∑

z
f(y)p(y) '

∫
y
f(y)p(y) dy

where p(y) is the likelihood of the input parameters x being x = y.

Monte-Carlo methods estimate from a sample set Y = {y(i)}:

E[f(x)] ≈ 1
|Y |

∑
y(i)

f(y(i))

Important: we require the y(i)
to occur with p(y(i)).

Example: Estimate
π
4 by choosing points in the unit square uniformly,

and testing if they are within the unit circle (here, uniform is okay).

No p(x), because the

y(i) are observed with

probability p(y(i))
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Gibbs Sampling
Markov Chains
Monte Carlo is simple, but how do we get such y(i)

according to their probabilities p(y(i))?

In a Markov process, the new state y(t+1)
only depends on the previous state y(t)

:

P (y(t+1) | y(1), . . . , y(t)) = P (y(t+1) | y(t))

We need to design a transition function g such that y(t+1) = g(y(t)) and p(y(t+1)) as desired.

y(0) y(1) y(2) · · · y(t) y(t+1) · · ·
g g g g g g

The first B are o�en ignored
These occur with p(y(i))

For g, we can use, e.g., Gibbs sampling. We then can estimate our hidden variables!

Because of autocorrelation, it is common to use only every Lth sample.

(We require P above to be ergodic, but omit details in this lecture.)

A really nice introduction to Markov-Chain-Monte-Carlo (MCMC) and Gibbs sampling can be found in [RH10].

A more formal introduction is in the textbook [Bis07].
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Gibbs Sampling
Updating variables incrementally
Assume that our state y(t)

is a vector with k > 1 components,

we can update one variable at a time for i = 1 . . . k:

y
(t+1)
i ∼ P (Yi | y(t+1)

1 , . . . , y
(t+1)
i−1︸ ︷︷ ︸

already updated

, y
(t)
i+1, . . . , y

(t)
k︸ ︷︷ ︸

not yet updated

)

Our function g then is to do this for each i = 1 . . . k.

Informally: in every iteration (t→ t+ 1), for every variable i, we choose a new value y
(t+1)
i

randomly, but we prefer values more likely given the current state of the other variables.

More likely values of y will be more likely returned (even with the desired likelihood of p(y)).

yi omi�ed

E. Schubert Advanced Topics in Text Mining 2017-04-17



Topic Modeling Introduction 5: 21 / 25

Gibbs Sampling
Benefits and details
P (Yi | y1, . . .) may not depend on all yj , but only on the “Markov blanket”.

(Markov blanket: parents, children, and other parents of the node’s children in the diagram.)

Sometimes we can also “integrate out” some yj to further simplify P .

This is also called a “collapsed” Gibbs sampler.

If we have a conjugate prior (e.g., Beta for Bernoulli, Dirichlet for Multinomial),

then we get the same family (but di�erent parameters) a posterior,

which usually yields much simpler equations.
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Gibbs Sampling
Collapsed Gibbs sampler [GS04]
We need to draw the topic of each word according to:

P (zi = t | w, d, . . .) ∝
∏
k

P (ϕk | β)︸ ︷︷ ︸
P (topic)

∏
d

P (θd | α)︸ ︷︷ ︸
P (document)

∏
w

P (zdw | θd)P (wdw | ϕzdw)︸ ︷︷ ︸
P (word given topic)

A�er integrating out ϕ and θ, we get the word-topic probability:

P (zi = t | w, d, . . .) ∝
∏

t

[
Γ(ntd + αk) · Γ(ntw+βw)

Γ(
∑
w′ ntw′+βw′ )

]
By exploiting properties of the Γ function, we can simplify this to:

P (zi = t | w, d, . . .) ∝(n−ditd + αt) · (n−ditw +βw)

n−dit +
∑
w′ βw′

where n−ditd , n−ditw , and n−dit are the number of occurrences of a topic-document assignment,

topic-word assignment, or topic, ignoring the current word wdi and its topic assignment zdi.

Computing this

is very expensive

A detailed derivation can be found in Appendix D of [Cha11].
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Latent Dirichlet Allocation
Inference with Gibbs Sampling
Pu�ing everything together:

1. Initialization:

1.1 Choose prior parameters α and β.

1.2 For every document and word, choose zdi randomly.

1.3 Initialize ntd, ntw , and nt.

2. For every Markov-Chain iteration j = 1 . . . I :

2.1 For every document d and word wdi:

2.1.1 Remove old zdi, wdi from ntd, ntw , and nt
2.1.2 Sample a new random topic zdi
2.1.3 Update ntd, ntw , and nt with new zdi, re-add wdi.

2.2 If j ≥ B (burn in) and only every Lth sample (decorrelation):

2.2.1 Monte-Carlo update all θd, ϕk from zdi

We try pu�ing words in

di�erent topics randomly

The more o�en we see a topic,

the more relevant it is.
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Probabilistic Topic Modeling
More complicated models
Many variations have been proposed.

I We can vary the prior assumptions (to draw θ, ϕ).

E.g. Rethinking LDA: Why priors ma�er [WMM09]

But conjugate priors like Dirichlet-Multinomial are easier to compute.

I Also learn the number of topics, α, and β (may require labeled data).

I Hierarchical Dirichlet Processes [Teh+06]

I Pitman-Yor and Poisson Dirichlet Processes [PY97; SN10]

I Correlated Topic Models [BL05]

I Application to other domains (instead of text).
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Evaluation of Topic Models
“Reading Tea Leaves” [Cha+09; LNB14]
Topic model evaluation is di�icult:

“There is a disconnect between how topic models are evaluated and why we expect topic
models to be useful.” – David Blei [Ble12]

I O�en evaluated with a secondary task (e.g., classification, IR) [Wal+09]

I By the ability to explain held out documents with existing clusters [Wal+09]

(A document is “well explained” if it has a high probability in the model)

I Manual inspection of the most important words in each topic

I Word intrusion task [Cha+09]

(Can a user identify a word that was artificially injected into the most important words?)

I Topic intrusion task [Cha+09]

(Can the user identify a topic that doesn’t apply to a test document?)
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Word Embeddings
Motivation
Consider these two sentences:

8

Obama speaks to the media in Illinois .

PresidentThe greets the press in Chicago .

Cosine similarity: 0, if stop words were removed.

Want to recognize:

Obama ∼ President

speaks ∼ greets

press ∼ media

Illinois ∼ Chicago

8

Example taken from [Kus+15]
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Word Embeddings
Motivation
The bag-of-words representation does not capture word similarity:

For example the words Obama and President:

Obama = ( 0 , 0 , 0 , 1 , 0 , . . . , 0)
President = ( 0 , 1 , 0 , 0 , 0 , . . . , 0)

Obama · President = ( 0 , 0 ·1, 0 , 1 ·0, 0 , . . . , 0) = 0

Because of this, the documents are completely dissimilar (except for stopwords):

sim({Obama , speaks , press , Illinois}, {President , greets , media , Chicago}) = 0

z We want a word representation where 0� sim(Obama , President ) < 1.

Preferrably also of lower dimensionality (100–500) than our vocabulary!
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Contextual information
What is a Wampimuk?10

Humans infer meaning from the context [MR01]:

He filled the wampimuk , passed it around and we all drunk some .

z Probably a drink?

We found a cute , hairy wampimuk sleeping behind the tree .

z Probably an animal?

We want computers to be able to make such inferences!

9

9

Image from [LBB14], but probably originally internet folklore.

10

This example is probably from Marco Baroni ca. 2011 to illustrate

the distributional hypothesis of [MR01], but is frequently (incorrectly?) a�ributed to [MR01].
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Vector representations of words
Towards word similarity
In the bag of words model, we can interpret our document vectors as:

~d =
∑

w∈d
ew =

∑
w∈d

(0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
1 only at position w

)

where ew is a unit vector containing a 1 in the column corresponding to word w.

In so-called “distributed representations”, the word information is not in a single position anymore:

Apple

Banana

Car

Dog

Elephant

a
n

i
m

a
l

f
r
u

i
t

w
h

e
e
l
s

e
l
o

n
g
a
t
e

o
v
a
t
e

e
d

i
b

l
e

b
a
r
k

s

t
a
i
l

similar

similar

Manually se�ing

these properties

is a huge e�ort!
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Vector representations of words
Different explicit vector representations
We can obtain such representations with di�erent approaches:

Document occurrences (term-document-matrix):

Apple

D
o
c

6

D
o
c

7

D
o
c

1
0

Neighboring words (cooccurrence vectors):

Apple

g
re

en

re
d

p
e
el

tr
e
e

Neighboring words with positions:

Apple

u
n
d
ern

ea
th

tr
e
e

Character trigraphs:

Apple

_
A

p
A

p
p

p
p
l

p
le

le
_
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Vector representations of words
Learned vector representations
The previous examples were engineered, high-dimensional, and sparse features.

We can get some success with Cosine similarity to compare words.

z Can we learn lower-dimensional (dense) features from the data?

LSA can be seen as such an approach: factorize the term-document-matrix

Many methods can be seen as a variant of this:

I build a (large) explicit representation

I factorize
11

into a lower-dimensional approximation

I use approximation as new feature vector instead

11

Not necessarily by SVD, but instead, e.g., similar to neural networks
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Neural Models for Word Similarity
Skip-Gram with Negative Sampling (SGNS, word2vec [Mik+13; LM14])
One hidden layer neural network:

ewi
T

×

Win

→

fwi
T

×

W T
out

→

ewj
T

Every word corresponds to one row in the “encoder matrix” Win (= word vectors).

Every word corresponds to one column in the “decoder matrix” Wout (usually discarded).

Weight matrixes Win and Wout are iteratively optimized to best predict the

neighbor words wj for j ∈ i− c, . . . , i− 1, i+ 1, . . . , i+ c and c ≈ 5.

Neural networks functions:

So�max, hierarchical so�max,

negative sampling
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Neural Models for Word Similarity
Continuous Bag of Words (CBOW, word2vec [Mik+13; LM14])
One hidden layer neural network:∑

j ewj
T

×

Win

→

fwi
T

×

W T
out

→

ewi
T

Use words wi−c, . . . , wi−1, wi+1, . . . , wi+c to predict word wi.

Intuition: sum the rows of every input word in Win,

find the most similar column in W T
out

as output.
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Neural Models for Word Similarity
Interpretation [GL14; LGD15; LGD15]
For skip-gram, we can interpret Win ×Wout as follows:

Win

×

W T
out

≈

X

vi

uj

Where X = {xij} is a word cooccurrence matrix.

z word2vec is an (implicit) matrix factorization.

We can get similar (but not quite as good) results with SVD [LG14].
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Neural Models for Word Similarity
Loss functions of word2vec [Mik+13; LM14]
Probability of word wj given wi:

p(wj | wi) ∝ exp
(
uTj · vi

)
such that

∑
j
p(wj | wi) = 1

Loss function for Skip-Gram:

Lskip-gram = − 1
|S|

∑
i∈S

∑
j=−c,...,−1,+1,...,c

log p(wi+j | wi)

Loss function for CBOW:

LCBOW = − 1
|S|

∑
i∈S

log p
(
wi |

∑
j=−c,...,−1,+1,...,c

wi+j

)
where |S| is the number of context windows.

For performance, approximate so�max (testing all j is too expensive)

with, e.g., hierarchical so�max or negative sampling.

Train with: backpropagation, stochastic gradient descent

So�max

Predict each

word separately

Aggregate all words

E. Schubert Advanced Topics in Text Mining 2017-04-17

Word and Document Embeddings Neural Models for Word Similarity 6: 11 / 13

Neural Models for Word Similarity
Optimizing skip-gram
We can optimize the weights using stochastic gradient descent and back-propagation.

The basic idea is to update the rows of Win and Wout with a learning rate η:

w
(t+1)
i =w

(t)
i − η

∑
j
εj · hj

where εj is the prediction error wrt. the jth target, and hj is the jth target.

Intuitively, in each iteration we

I make the “good” output vector(s) more similar to output we computed

I make the “bad” output vector(s) less similar to output we computed

use negative sampling: do not update all of them, only a sample

I make the input vector(s) more similar to the vector of the desired output

I make the input vector(s) less similar to the vector of the undesired output
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Neural Models for Word Similarity
Global Vectors for Word Representation [PSM14]
If we aggregate all word cooccurrences into a matrix X = {xij}, the skip-gram objective:

Lskip-gram = − 1
|S|

∑
i∈S

∑
j=−c,...,−1,+1,...,c

log p(wi+j | wi)

becomes

Lskip-gram = −
∑

i

∑
j
xji log p(wj | wi)

This is similar to the loss function of GloVe:

LGloVe = −
∑

i

∑
j
f(xji) (log(xij − uTj · vi))2

weight divergence
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Neural Models for Document Similarity
From word2vec to doc2vec [LM14]
The early approaches used the average word vector, but it did not work too well.

We can design the vector representation as we like.

Idea: also include the document.

Concatenate the word vector with a document indicator (0, . . . , 0, 1, 0, . . . , 0).

⇒ we also optimize a vector for each (training) document.
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Summary
Representing Documents
We learned about di�erent ways of representing documents as vectors:

I Bag of Words (BoW), with di�erent weights (TF-IDF)

I Topic distributions (pLSI, LDA)

I Embeddings (doc2vec)

Challenges:

I Stop words & weighting, spelling errors

I Synonyms, homonyms, negation, sarcasm, irony

I Short documents

I High dimensionality

I Similarity computations

I Evaluation

E. Schubert Advanced Topics in Text Mining 2017-04-17



Summary & Conclusions Summary 7: 2 / 5

Summary
Clusters & Topics
Clusters:

I Typically every document belongs to exactly one cluster

I So� assignment variants exist (EM, Fuzzy c-means, . . . )

I O�en assume dense vectors

Frequent itemsets / frequent sequences / subspace clustering:

I A document can contain multiple frequent itemsets, or none

Topics:

I Documents are mixtures of topics

I LDA: Dirichlet prior – only a few topics per document

I Sparse vectors assumed
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Summary
Recurring themes
Many methods can be interpreted as matrix factorization:

I Explicit, e.g., LSI/LSA

I Implicit: k-means as one-hot factorization of the feature matrix [Bau16]

I Implicit: pLSI, LDA as non-negative matrix factorization (NMF) [DLJ10]

I Implicit: word2vec as factorization of the cooccurrence matrix [LG14]

Optimization:

I k-means (Lloyds algorithm) as expectation-maximization

I EM for optimizing pLSI

I Gibbs sampling and Markov-Chain-Monte-Carlo

I Stochastic Gradient Descent
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Conclusions
Text clustering / topic modeling:

I Two sides of the same coin

I Rely on statistical models

I Trained by numerical optimization

Usage is not trivial:

I Many parameters to choose and tune

I Many variants

I Requires fine-tuning for best results

I Hard to evaluate

z Do not treat these methods as a “black box” algorithms,

but try to understand how they work, so you can adapt them to your problem!
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Open Problems
Many open problems – a lot of potential for thesis topics:

I Multi-lingual support (German is more di�icult, and current quality can be pre�y bad)

I Hierarchical topics (e.g., G20 riots as part of G20 overall)

I Temporal aspects (emerging new topics, such as the G20 riots)

I Evaluation and topic summarization

I Bias problems (“racist” algorithms, gender bias, . . . )

man is to soccer as woman is to z volleyball
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