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What is Clustering?

Cluster analysis (clustering, segmentation, quantization, ...)
is the data mining core task to find clusters.

But what is a cluster? [Est02]

> cannot be precisely defined .
many different principles and models have been defined . .
even more algorithms, with very different results '
when is a result “valid”? ‘
results are subjective “in the eye of the beholder” cy
no specific definition seems “best” in the general case [Bon64]
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Common themes found in definition attempts:
» more homogeneous
» more similar
» cohesive

Suggested reading: V. Estivill-Castro. “Why so many clustering algorithms — A Position Paper”. In: SIGKDD
Explorations 4.1 (2002), pp. 65-75
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What is Clustering? /2

Cluster analysis (clustering, segmentation, quantization, ...)
is the data mining core task to divide the data into clusters such that:

> similar (related) objects should be in the same cluster

> dissimilar (unrelated) objects should be in different clusters
» clusters are not defined beforehand (otherwise: use classification)
> clusters have (statistical, geometric, ...) properties such as: *  ~

Cohesjve? .

» connectivity
> separation

> least squared deviation Separate
> density i

Clustering algorithms have different

» cluster models (“what is a cluster for this algorithm?”)

» induction principles (“how does the algorithm find clusters?”) i Sl
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Applications of Clustering

We can use clustering stand-alone for data exploration,
or as preprocessing step for other algorithms.

Usage examples:

» Customer segmentation:
Optimize ad targeting or product design for different “focus groups”.
> Web visitor segmentation:
Optimize web page navigation for different user segments.
> Data aggregation / reduction:
Represent many data points with a single (representative) example.
E.g., reduce color palette of an image to k colors
> Text collection organization:
Group text documents into (previously unknown) topics.
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Applications of Clustering /2

> Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus, and species
> Information retrieval: document clustering
» Land use: identification of areas of similar land use in an Earth observation database

> Marketing: help marketers discover distinct groups in their customer bases, and then use this
knowledge to develop targeted marketing programs

» City-planning: Identifying groups of houses according to their house type, value, and
geographical location

» Earthquake studies: observed Earthquake epicenters should be clustered along continent
faults

» Climate: understanding Earth climate, find patterns of atmospheric and oceanic phenomena

» Economic Science: market research
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Applications of Clustering /3

Construction of thematic maps from satellite imagery
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Raster image of California
using 5 wave bands:
5-d feature space

» different surfaces of the Earth have different properties in terms of reflections and emissions

> cluster satellite imagery into different land use (forest, agriculture, desert, buildings, ...)
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Basic Steps to Develop a Clustering Task

> Feature selection
> Select information (about objects) concerning the task of interest
» Aim at minimal information redundancy
» Weighting of information

> Proximity measure
» Similarity of two feature vectors
> Clustering criterion
» Expressed via a cost function or some rules
> Clustering algorithms
» Choice of algorithms
» Validation of the results
> Validation test
> Interpretation of the results

> Integration with applications
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Distances, Metrics and Similarities

In mathematics, a metric or distance function is defined as a function dist : X x X — R=Y
that satisfies the conditions

(N) dist(z,y) > 0 (non-negativity)

() dist(z,y) = 0 < x = y (identity of indiscernibles)

(S) dist(z,y) = dist(y, z) (symmetry)
(z,y) <

(T) dist dist(z, 0) + dist (o, y) (triangle inequality)

In data mining, we have a less perfect world.

» For (I), we require only = = y = dist(x, y) = 0, because we often have duplicate records
» We often do not have (T).

> We often allow the distance to be co.
Common terminology used in data mining:
» metric: satisfies (N), (S), and (T).
» distance: satisfies (N) and (S).
» dissimilarity: usually (but not always) satisfies (N) and (S).
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Distances, Metrics and Similarities /2

A similarity is a function s : X x X — R U {z00} such that low values indicate dissimilar
objects, and large values indicate similarity.
Similarities can be
» Symmetric: s(z,y) = s(y, )
» Non-negative: s(x,y) > 0
» Normalized: s(z,y) € [0;1] and s(z,z) =1
If dist(x, y) is a distance function, then it implies a non-negative, symmetric, normalized

similarity:
1
Y) = ———— €[0;1
s(@.y) 1 + dist(z,y) [0;1]
If s(z,y) is a normalized and symmetric similarity, then
dist(z,y) =1 — s(x,y) is a distance (with at least (N) and (S), but usually not a metric).

3:8/153
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Distance Functions N
||z|| without index usually

There are many different distance functions.
The “standard” distance on R? is Euclidean distance:
dEuclidean(xa y) = Zd(l'd - yd)2 = ||l’ - y||2
Manhattan distance (city block metric):
dManhattan($a y) = Zd ‘l'd - yd‘ = ||l’ - y”l

are special cases of Minkowski norms (L,, distances, p > 1):

1/p
dr,(e.0) = (3 lea—vaP) " =llz —yl,
In the limit p — oo we also get the maximum norm:

dMaximum (T, y) = maxg [zq — yal

» many more distance functions — see the “Encyclopedia of Distances” [DD09]!

refers to the Euclidean norm.

3:9/153
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Distance Functions /2
Many more variants:
Squared Euclidean distance (“sum of squares”):
Buctidean(@y) =D (@a—ya)* =z —yll3
Minimum distance (p — 0) - not metric:

dMinimum (Z, Y) =ming [zq — Yal
Weighted minkowski norms:

dr,(x,y,w) = (Zdwd\iﬂd - yd|p) v

Canberra distance:

Td — Yd
dCanberra(xa y) = Zd M

» many more distance functions — see the “Encyclopedia of Distances” [DD09]!
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Similarity Functions
Instead of distances, we can often also use similarities:

Cosine similarity:

Ty 2 Tivi
S €, = =
V) S Rl T VE e
on data normalized to Lo length ||z|| = ||y|| = 1, this simplifies to:
Scos (1'7 Y) HIH:ZII:yH:l r-Yy= Zl LilYi

Popular transformations to distances:

dcos1 (.CC, y) =1 — Scos (.CC, y)

dcosz (.%', y) = aI'CCOS(SCOS (.%', y))

» Careful: if we use similarities, large values are better
— with distances, small values are better.
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Distances for Binary Data

Binary attributes: two objects 01,02 € {0,1}% having only binary attributes
» Determine the following quantities:
fo1 = the number of attributes where 01 has 0 and 05 has 1
f10 = the number of attributes where 0 has 1 and 05 has 0
foo = the number of attributes where 01 has 0 and 05 has 0
f11 = the number of attributes where 0 has 1 and 05 has 1

» Simple matching coefficient (SMC):

ssnc (01, 02) = Ji1 + foo _ Ju+ foo
’ Jor + fio =+ foo + fu1 d
used for symmetric attributes where each state (0, 1) is equally important.

» Simple matching distance (SMD):

01+ f10  dHamming (01,02
dSMC(Ol, 02) =1- SSMC(Ol, 02) — f f ammmg( )

d d

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Distance & Similarity 3:13/153

Jaccard Coefficient for Sets

Jaccard coefficient for sets A and B (if A = B = (), we use similarity 1):
_|AnB| |AN B

(A, B) = = i1
SJaccad( ) ’AUB’ |A’+’B|—‘AHB‘ E[O ]
Jaccard distance for sets A and B:
AUB|—]|ANB
dJaccard(Aa B) =1- sJaccard(Aa B) = | |/l U |B| | € [07 1]
If we encode the sets as binary vectors, we get:
B fi1
SJaccard(Ol702) = m
fo1r + f10

dJaccard(Ola 02) = m
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Example Distances for Categorical Data
Categorical data: two lists x = {21,292, ..., 24} and y = {y1,y2,. .., ya}
with each x; and y; being categorical (nominal) attributes

» Hamming distance: “count the number of differences”.
d .
0 if Ti =Y
disty (z d(x;, y;) with §(z =
amming y ; zyyz ( Zayl) {1 if 2, #y@
> Jaccard by taking the position into account.

» Gower’s for mixed interval, ordinal, and categorical data.

0 if T =1Y;
d . . .
) 1 if variable X; categorical and x; # y;
dlStGower(xvy) = Z |5 —y; | . . ' - ' '
= | 5 if variable X is interval scale
|rank(x"rz:iank(y")‘ if variable X is ordinal scale
where R; = max, x; — min, z; is the range, and rank(z) € [1,...,n] is the rank.

Intuition: each attribute has the same maximum distance contribution 1.
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Mahalanobis Distance

Given a data set with variables X1, ... Xy, and n vectors 1 ... xp, x; = (241,

T
.. 7$id) .
The d x d covariance matrix is computed as:

— n - -
Sij = Sxux, = ity ), (n — Xa) (any — X5)

The Mahalanobis distance is then defined on two vectors z,y € R? as:

datan(.y) = /(& — y) TS Lz —y)
where ¥~ 1 is the inverse of the covariance matrix of the data.
» This is a generalization of the Euclidean distance
> This takes correlation between attributes into account

> The attributes can have different ranges of values
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Scaling & Normalization

Gower’s distance and Mahalanobis distance scale attributes.
This can be beneficial (but also detrimental) for other distances, too!
Popular normalization approaches:
> To unit range:
r; — min X;

I 0:1
Ti max X; — min X; €01

» To unit variance:

such that X/; =0, FX{ =1

» Principal component analysis (PCA) such that Sx/x: = 0 for i # j.
i

> Many more ...

> Scaling ~ feature weighting!

Erich Schubert Knowledge Discovery in Databases
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To Scale, or not to Scale?

Person ‘ Age [years] ‘ Height [cm] ‘ Height [feet]

3:17/153

A 35 190 6.232
B 35 160 5.248
C 40 190 6.232
D 40 160 5.248
Which persons are more similar, A and B, or A and C?
Height [cm] Height [gt(])
190 A. .C
8
180
6 Ae oC
170 Be oD
4
160 B [ 3 ) D
2
20 30 40 50 Age [years] 34 36 38 40

Here, scaling often improves the results!

Erich Schubert Knowledge Discovery in Databases

42 Age [years]

Winter Semester 2017/18
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To Scale, or not to Scale? /2

Object X Y
A 13.37 38.12
B 12.34 45.44
C -122.42 37.78
D -122.68 45.52
To scale or not to scale?
° °
or s
° °

Erich Schubert
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Clustering

To Scale, or not to Scale? /2

Distance & Similarity

Object ‘ Longitude | Latitude
Palermo 13.37 38.12
Venice 12.34 45.44
San Francisco -122.42 37.78
Portland, OR -122.68 45.52
To scale or not to scale?
°
or s
°

Erich Schubert

Don’t scale! We need to know what the attributes mean!

Knowledge Discovery in Databases
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Different Kinds of Clustering Algorithms

There are many clustering algorithms, with different

Paradigms:

>

>

>

Distance
Similarity
Variance
Density
Connectivity
Probability
Subgraph

Erich Schubert

Properties:

>

>

>

Partitions: strict, hierarchical, overlapping

Models: Prototypes, Patterns, Gaussians, Subgraphs, ...
Outliers / noise, or complete clustering

Hard (binary) assignment or soft (fuzzy) assignment
Full dimensional or subspace clustering

Rectangular, spherical, or correlated clusters

Iterative, or single-pass, or streaming
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Quality: What Is Good Clustering?

A good clustering method will produce high quality clusters
> high intra-class similarity: cohesive within clusters
> low inter-class similarity: distinctive between clusters
The quality of a clustering method depends on
> the similarity measure used by the method,
> its implementation, and
> its ability to discover some or all of the hidden patterns

Quiality of clustering

» There is usually a separate “quality” function that measures
the “goodness” of a cluster or a clustering

» It is hard to define “similar enough” or “good enough”,

3:20/153

i.e., the answer is typically highly subjective and specific to application domain

Erich Schubert Knowledge Discovery in Databases
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Requirements and Challenges

> Scalability
> Clustering all the data instead of only sample data

> Ability to deal with different types of attributes
» Numeric, binary, categorical, ordinal, linked, and mixture of these
» Constraint-based clustering
» User may give input as constraints
» Use domain knowledge to determine input parameters
> Interpretability and usability
> Others

> Discovery of clusters with arbitrary shape

Ability to deal with noisy data

Incremental clustering and insensitivity to input order
High dimensionality

vV VvYyy
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Major Clustering Approaches

Partitioning approaches
> Construct partitions that optimize some criterion, e.g., minimizing the sum of squared errors
» Typical methods: k-means, PAM (k-medoids), CLARA, CLARANS
Density-based approaches
» Based on connectivity, density, and distance functions
» Typical methods: DBSCAN, OPTICS, DenClue, HDBSCAN*
Hierarchical approaches
» Create a hierarchical decomposition of the set of data (or objects) using some criterion
» Typical methods: DIANA, AGNES, BIRCH
Model-based
» Optimize the fit of a hypothesized model to the data
> Typical methods: Gaussian Mixture Modeling (GMM, EM), SOM, COBWEB
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Major Clustering Approaches /2
Grid-based approach

> based on a multiple-level granularity structure
> Typical methods: STING, WaveCluster, CLIQUE
Frequent pattern-based
» Based on the analysis of frequent patterns
» Typical methods: p-Cluster
User-guided or constraint-based
» Clustering by considering user-specified or application-specific constraints
> Typical methods: COD (obstacles), constrained clustering
Link-based clustering
> Objects are often linked together in various ways

» Massive links can be used to cluster objects: SimRank, LinkClus
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Hierarchical Agglomerative Clustering

One of the earliest clustering methods [Sne57; Sib73; Har75; KR90]: ;

Initially, every object is a cluster
Find two most similar clusters, and merge them

Repeat (2) until only one cluster remains

> W=

Plot tree (“dendrogram”), and choose interesting subtrees

Many variations that differ by:
» Distance / similarity measure of objects
» Distance measure of clusters (“Linkage”)

» Optimizations

Erich Schubert Knowledge Discovery in Databases
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Distance of Clusters

Single-linkage: minimum distance = maximum similarity
dsingle(4, B) := aeIE,ibIéB d(a,b) = aenﬁi}éB s(a,b)
Complete-linkage: maximum distance = minimum similarity
et (4 B) = s d(0,0) i o(0,0)
Average-linkage (UPGMA): average distance = average similarity

1
daverage(Aa B) _W ZaeA ZbEB d<a7 b)

Centroid-linkage: distance of cluster centers (Euclidean only)

dcentroid(Aa B) = H,U,A - /’LBH2
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Distance of Clusters /2

McQuitty (WPGMA): average of previous sub-clusters
Defined recursively, e.g., via Lance-Williams equation.
Average distance to the previous two clusters.

Median-linkage (Euclidean only): distance from midpoint
Defined recursively, e.g., via Lance-Williams equation.
Median is the halfway point of the previous merge.

Ward-linkage (Euclidean only): Minimum increase of squared error

vl A B) o= = 5 = P

Mini-Max-linkage: Best maximum distance, best minimum similarity

Aminimax(A, B) = chléprreI}anfB dle.p) = c&%XBpénXSBS(C P)

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Hierarchical Methods 3:27/153

AGNES - Agglomerative Nesting [KR90]
AGNES, using the Lance-Williams equations [LW67]:

1. Compute the pairwise distance matrix of objects
2. Find position of the minimum distance d(i, 7) (similarity: maximum similarity s(i, 7))
3. Combine rows and columns of ¢ and j into one using Lance-Williams update equations
d(AU B, C) = LanceWilliams (d(A, C),d(B, C), d(A, B))
using only the stored, known distances d(A, C), d(B, C), d(A, B).!
4. Repeat from (2.) until only one entry remains

5. Return dendrogram tree

' Avoid to compute d(A, C) directly, as this is expensive: O(n?).
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AGNES - Agglomerative Nesting [KR90] /2

Lance-Williams update equation have the general form:

3:28/153

D(AUB,C) = a1d(A,C) + a2d(B,C) + Bd(A, B) + ~|d(A,C) — d(B, )]

Several (but not all) linkages can be expressed in this form (for distances):

a3} o p
Single-linkage 1/2 1/2 0
Complete-linkage 1/2 1/2 0
Average-group-linkage (UPGMA) % % 0
McQuitty (WPGMA) 1/2 1/2 0
- A B —|A|B
Centroid-linkage (UPGMC) % \A{+|‘B| (\f"\l-‘*l-lB"l)z
Median-linkage (WPGMC) 1/2 1/2 —1/4
Ward |A|+|C] |B|+|C]| —1C|

[AIF[BIH[C] [AFIBIFIC]T [AHBIHIC]

MiniMax linkage: cannot be computed with Lance-Williams updates,
but we need to find the best cluster representative (in O(n?)).

Erich Schubert Knowledge Discovery in Databases
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Clustering

Example: AGNES

Example with complete linkage (= maximum of the distances):

Hierarchical Methods

5 © AlB|cCc|D|E
! ® ® ]
® B [0.71
3
c |5 |570

2

® D [2.92[3.61]2.55
1 E |2.5](3.20/2.69| 0.5
0 F [3.54]4.24/1.58| 1 [1.12
0o 1 2 3 4 5 6

Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.

Erich Schubert Knowledge Discovery in Databases
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 © AlB|C|D|E]|F 6
4 ® A 5
® B [0.71 4
3
c |5 |570 3
2
® D [2.92[3.61/2.55 2
1 E |2.5]3.20 2.69 1
0 F |3.54/4.24{158] 1 |1.12 A B C DI EI =
0o 1 2 3 4 5 6
Scatter plot Distance matrix Dendrogram

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 © AlB|C|D E|F 6
4 ® A 5
® B [0.71 4
3
c |5 |570 3
2
® D [2.92[3.61/2.55 2
1 E |2.5]3.20 2.69 1
0 F |3.54/4.24{158] 1 1.12 A B C DI EI =
0o 1 2 3 4 5 6
Scatter plot Distance matrix Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Clustering

Example: AGNES

Example with complete linkage (= maximum of the distances):

Hierarchical Methods

5 o AlB|C|D E
® B {0.71
3
C |5 (570

2

® D [2.92(3.61
1 E 2.69
0 F |3.54|4.24|1.58| | 1.12
0 1 2 3 4 5 6

Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.
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Clustering

Example: AGNES

Example with complete linkage (= maximum of the distances):

Hierarchical Methods

5 o AlB|C|D E
4 Q © :
e ;
3
C |5 (570

2

® D [2.92(3.61
1 E 2.69
0 F |3.54|4.24|1.58| | 1.12
0 1 2 3 4 5 6

Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.

Erich Schubert Knowledge Discovery in Databases
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 A B|C|D E|F 6

©
4
@ ©
5 B 4

>
ot

c|5 570 3
2
® D [2.92 3.61 2
1 E 2.69 1
0 F |3.54 424|158 | 1.12 Al Bl C DI EI =
0 1 2 3 4 5 6
Scatter plot Distance matrix Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 © A B|C|D E|F 6
4 ® A 5
@ B 4
3
C 5.70 3
2
® D 3.61 2
1 E 2.69 1
0 F 4.241.58 1.12 Al Bl C DI EI =
o 1 2 3 4 5 6 . .
Scatter plot Distance matrix Dendrogram

Find minimum distance.

Please do not print these slides — save a tree.
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Clustering

Example: AGNES

Example with complete linkage (= maximum of the distances):

Hierarchical Methods

5 o A B|C|D E
4 © ¢ A
@9 .
3
c 5.70
2
® D 3.61
1 E 2.69
0 F 4.24(1.58 @
o 1 2 3 4 5 6
Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Clustering

Example: AGNES

Example with complete linkage (= maximum of the distances):

Hierarchical Methods

5 © A B|C|D E F
4 )\ ¢) A
@9 .
3
c 5.70
2
® D 3.61
1 E 2.69
0 F 4.24(1.58 @
0 1 2 3 4 5 6
Scatter plot Distance matrix

3:29/153

1
mil
A B C D E F

Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 © A B|C|D E F
4 )\ ¢) A
@9 .
3
c 5.70
2
® D
1 E 2.69
0 F 4.24
0 1 2 3 4 5 6
Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 A B|C|D E F 6
4 A 2
B 4
3
c 5.70 3
2
® ° i
1 E i —
0 F 4.24
0 1 2 3 4 5 6 A B C D EF
Scatter plot Distance matrix Dendrogram

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 A B|C D E F 6
4 A 2
B 4
3
c 5.70 3
2
® ° i
1 E i —
0 F 4.24
0 1 2 3 4 5 6 A B C D EF
Scatter plot Distance matrix Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 A B|C D E F
4 A
B
3
c 5.70
2
® D
1 E
0 F
0 1 2 3 4 5 6
Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.
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Example: AGNES

Example with complete linkage (= maximum of the distances):

5 A B|C D E T
4 A
B
3
c
2
D
1 E
0 F
0 1 2 3 4 5 6
Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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We may need to merge
non-adjacent rows!

il e

A B C D E F

Dendrogram

We don’t know the optimum
label positions in advance
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

©
4 @ ©
®

1 @

0 1 2 3 4 5 6
Scatter plot

Find minimum distance.

Clustering

Hierarchical Methods

A|B|C|D|E
A
B 10.71
C | 5 570
D |2.92|3.61|2.55
E |253.20{2.69| 0.5
F 13.54]4.24]{1.58| 1 |1.12

Please do not print these slides — save a tree.

Erich Schubert

Distance matrix

Knowledge Discovery in Databases
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Clustering

Example: AGNES /2

Example with single linkage (= minimum of the distances):

Hierarchical Methods

5 o A|lB|c|D|E
® B [0.71
3
c |5 |570

2

® D [2.92[3.61]2.55
1 E |2.5]3.20 2.69
0 F [3.54]4.24/1.58| 1 [1.12
o 1 2 3 4 5 6

Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 © AlB|C|D E|F 3
4 ® A 2.5
® B [0.71 2
3
c |5 |570 1.5
2
® D [2.92[3.61/2.55 1
1 E | 25320 2.69 0.5 I_l
0 F |3.54/4.24{158] 1 1.12
0 1 2 3 4 5 6 A B C D E F
Scatter plot Distance matrix Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Clustering

Example: AGNES /2

Example with single linkage (= minimum of the distances):

Hierarchical Methods

5 o AlB|Cc|D E
® B [0.71
3
c |5 (570

2

® D 2.55
1 E |25]3.20
0 F |3.54[4.24[1.58| 1
0 1 2 3 4 5 6

Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.

Erich Schubert Knowledge Discovery in Databases

3:30/153

2.5

1.5

0.5 |—|

A B C D E F

Dendrogram

Winter Semester 2017/18



Clustering  Hierarchical Methods

Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 © A|lB|C|D E|F
o go ¢
¥ g
3
C |5 (570

2

® D 2.55
1 E [253.20
0 F [3.544.24|1.58] 1
0 1 2 3 4 5 6

Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Clustering

Example: AGNES /2

Example with single linkage (= minimum of the distances):

Hierarchical Methods

5 o A B|C|D E
o go ¢
® :
3
Cc|5 570

2

® D 2.55
1 E |25 320
0 F |3.54 4.24[1.58| 1
0 1 2 3 4 5 6

Scatter plot Distance matrix

2.5

1.5

0.5

3:30/153
A B C D E F
Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 © A B|C|D E|F
4 © ® A
B
3
cl|s5
2
@ D 2.55
1 E [25
0 F |3.54 1 24(1.58] 1
0 1 2 3 4 5 6
Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.
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Clustering

Example: AGNES /2

Example with single linkage (= minimum of the distances):

Hierarchical Methods

5 o A B|C|D E
4 © ¢ A
@9 .
3
c|s
2
@ D 2.55
1 E [25
0 F (354 1.58@
0 1 2 3 4 5 6
Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 A B|C|D E F 3
© A 2.5
I C
@ B 2
3
Cc|s5 1.5
2
® D 2.55 1
1 E |25 0.5 |_—|
0 F |3.54 1.58@
0o 1 2 3 4 5 6 A B C D B F

Scatter plot Distance matrix Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 © A B|C|D E F
4 © ¢ A
@9 .
3
cl|s5
2
® D
1 E [25
0 F 1.58
0 1 2 3 4 5 6
Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 A B|C|D E F
4 A
B
3
cl|s5
2
® D
1 E [25
0 F
0 1 2 3 4 5 6
Scatter plot Distance matrix

Merge clusters, and update dendrogram.

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 A B|C D E F 3

4 A 2.5
B 2

3
Cc|s5 1.5

2

® D '
1 E |25 0.5 |_—|
0 F
0o 1 2 3 4 5 6 A B C D B F

Scatter plot Distance matrix Dendrogram

Update distance matrix (here: keep maximum in each row/column, except diagonal).

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 A B|C D E F
® © A
4
@9 .
3
c
2
® D
1 E [25
0 F
o 1 2 3 4 5 6
Scatter plot Distance matrix

Find minimum distance.

Please do not print these slides — save a tree.
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Example: AGNES /2

Example with single linkage (= minimum of the distances):

5 A B|C D E F
4 A
B
3
C
2
D
! e 29
0 F
0o 1 2 3 4 5 6

Scatter plot Distance matrix

Merge clusters. ~..«d update dendrogram.

Same clusters in this example,
but this is usually not the case.

Please do not print these slides — save a tree.
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In this very simple example,
single and complete linkage
are very similar
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0.5 |——|
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Extracting Clusters from a Dendrogram

At this point, we have the dendrogram — but not yet “clusters”.
Various strategies have been discussed:

» Visually inspect the dendrogram, choose interesting branches

v

Stop when k clusters remain (may be necessary to ignore noise [Sch+17b])

v

Stop at a certain distance (e.g., maximum cluster diameter with complete-link)

v

Change in cluster sizes or density [Cam+13]

v

Constraints satisfied (semi-supervised) [Pou+14]:

Certain objects are labeled as “must” or “should not” be in the same clusters.
4
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Complexity of Hierarchical Clustering

Complexity analysis of AGNES:
1. Computing the distance matrix: O(n?) time and memory.
2. Finding the minimum distance / maximum similarity: O(n?) - i
3. Updating the matrix: O(n) - i (with Lance-Williams) or O(n?) - i
4. Number of iterations: i = O(n)

Total: O(n3) time and O(n?) memory!

Better algorithms can run in guaranteed O(n?) time [Sib73; Def77], with priority queues we get
O(n?logn) [Mur83; DE84; Epp98; Miil11], or “usually n?” time with caching [And73].

Instead of agglomerative (bottom-up), we can also begin with one cluster, and divide it (DIANA).
But there are O(2") splits — need heuristics (i.e., other clustering algorithms) to split.

» Hierarchical clustering does not scale to large data, code optimization matters [KSZ16].
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Benefits and Limitations of HAC

Benefits:
> Very general: any distance / similarity (for text: cosine!)
> Easy to understand and interpret
> Hierarchical result
» Dendrogram visualization often useful (for small data)
» Number of clusters does not need to be fixed beforehand
> Many variants
Limitations:
» Scalability is the main problem (in particular, O(n?) memory)

> In many cases, users want a flat partitioning

v

Unbalanced cluster sizes (i.e., number of points)
Outliers

v
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k-means Clustering

The k-means problem:
» Divide data into k subsets (k is a parameter)
> Subsets represented by their arithmetic mean pc

» Optimize the least squared error

8SQ = ZZZM pe.d)®

d xz,€C

Important properties:

> Squared errors put more weight on larger deviations

> Arithmetic mean is the maximum likelihood estimator of centrality
» Data is split into Voronoi cells

» k-means is a good choice, if we have k signals and normal distributed measurement error

Suggested reading: the history of least squares estimation (Legendre, Gauss):
https://en.wikipedia.org/wiki/Least_squares#History
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Clustering  Partitioning Methods

The Sum of Squares Objective We can rearrange these sums

because of communtativity
The sum-of-squares objective:

S$SQi= > gﬁ Yoo (@ia—nca)?

——

every cluster X every dimension X every point squared deviation from mean

For every cluster C' and dimension d, the arithmetic mean minimizes
o 2 . . _ 1 )
Zmiec(xz’d Ke.d) is minimized by Hed = 1o inec Tid
Assigning every point x; to its least-squares closest cluster C' usually? reduces SSQ, too.
Note: sum of squares = squared Euclidean distance:

_ 2 _
Zd(xi’d - MC,d)Q = ||xl - ﬂCH = d]%)uclidean(xi’ IUC)

3:35/153

We can therefore say that every point is assigned the “closest” cluster, but we cannot use arbitrary

other distance functions in k-means (because the arithmetic mean only minimizes SSQ).

*This is not always optimal: the change in mean can increase the SSQ of the new cluster.
But this difference is commonly ignored in algorithms and textbooks.
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The Standard Algorithm (Lloyd’s Algorithm)

The standard algorithm for k-means [Ste56; For65; LI082]:

3:36/153

Algorithm: Lloyd-Forgy algorithm for k-means

1 Choose k points randomly as initial centers

t
2 repea K . Lines 3 and 5
3 Assign every point to the least-squares closest center et S S50
4 | stop if no cluster assignment changed
5 Update the centers with the arithmetic mean

This is not the most efficient algorithm (despite everybody teaching this variant).

ELKI [Sch+15] contains = 10 variants (e.g., Sort-Means [Phi02]; benchmarks in [KSZ16]).
There is little reason to still use this variant in practise!

The name k-means was first used by MacQueen for a slightly different algorithm [Mac67].

k-means was invented several times, and has an interesting history [Boc07].

Erich Schubert Knowledge Discovery in Databases
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Example: k-means Clustering with Lloyd’s algorithm /1

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12
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Example: k-means Clustering with Lloyd’s algorithm /1

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12

Choose initial centroids
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Example: k-means Clustering with Lloyd’s algorithm /1

12
11
10
9
8
7
/
6 S
T /
5
4 /
3 /
2
1

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points

Erich Schubert Knowledge Discovery in Databases
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Example: k-means Clustering with Lloyd’s algorithm /1

12

11

—_
(=)

ot

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12

Recompute centroids
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Example: k-means Clustering with Lloyd’s algorithm /1

12

11

—_
(=)

[~
/

NOW ks Ol O N 00 ©

[y

\T

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points
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Example: k-means Clustering with Lloyd’s algorithm /1

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12

Recompute centroids
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Example: k-means Clustering with Lloyd’s algorithm /1

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points
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Example: k-means Clustering with Lloyd’s algorithm /1

12 k-means has converged
11 in the third iteration
10 } - with SSQ = 61.5
9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12
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Example: k-means Clustering with Lloyd’s algorithm /2

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12
Let’s try again!
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Example: k-means Clustering with Lloyd’s algorithm /2

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12

Choose initial centroids
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Example: k-means Clustering with Lloyd’s algorithm /2

12

11

10

9

8

) \

6

) \

L NN \

3

) \
1 :

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points
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Example: k-means Clustering with Lloyd’s algorithm /2

12
11

—_
N W ks OO N 00 © O

[y

Erich Schubert

Clustering  Partitioning Methods

?

3 4 5 6 7 8

Recompute centroids

Knowledge Discovery in Databases
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Example: k-means Clustering with Lloyd’s algorithm /2

12 k-means has converged
11 in the second iteration
10 } - with SSQ = 54.4
9

8

7

6 A\

5

SR A

3

) \

1 %

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points
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Example: k-means Clustering with Lloyd’s algorithm /3

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12
Let’s try again!
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Example: k-means Clustering with Lloyd’s algorithm /3

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

1 2 3 4 5 6 7 8 9 10 11 12

Choose initial centroids
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Example: k-means Clustering with Lloyd’s algorithm /3

12

11

10

9 /1
8

7 7

6 /

51 &

4

3

2

1 ?

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points
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Example: k-means Clustering with Lloyd’s algorithm /3

12

11

—_
(=)

NOW ks Ol O N 00 ©

[y

?

1 2 3 4 5 6 7 8 9 10 11 12

Recompute centroids
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Example: k-means Clustering with Lloyd’s alg~- "’

k-means has converged
12 in the second iteration

1 i | with SSQ = 72.9
10

9

8

! /

)

4

3

2

1 ¢

1 2 3 4 5 6 7 8 9 10 11 12

Reassign points
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Non-determinism & non-optimality

Most k-means algorithms
» do not guarantee to find the global optimum (would be NP-hard - too expensive)
» give different local optima,® depending on the starting point

In practical use:
» data is never exact, or complete

» the “optimum™ result is not necessarily the most useful

» Usually, we gain little by finding the true optimum

» It is usually good enough to try multiple random initializations and keep the “best™

*More precisely: static point. The standard algorithm may fail to even find a local minimum [HW79].
“Least squares, i.e., lowest SSQ - this does not mean it will actually give the most insight.
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Initialization

Ideally, each initial center is from a different cluster.

But the chance of randomly drawing one centroid from each cluster is small:

» Assuming (for simplification) that all clusters are the same size n, then

number of ways to select one centroid from each cluster ~ k!n* k!

b= number of ways to select k centroids - (kn)k kR
» For example, if k = 10, then probability = 10!/10'° = 0.00036

» We can run k-means multiple times, and keep the best solution.
But we still have a low chance of getting one center from each cluster!
For k = 10 and 100 tries: p’ = 0.0353. Need ~ 2000 attempts for 50% chance.

On the other hand, even if we choose suboptimal initial centroids,
the algorithm still can converge to a good solution.

And even with one initial centroid from each cluster, it can converge to a bad solution!
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Initialization /2

Several strategies for initializing k-means exist:

>

>

>

Initial centers given by domain expert

Randomly assign points to partitions 1. ..k (not very good) [For65]
Randomly generate k centers from a uniform distribution (not very good)
Randomly choose k data points as centers (uniform from the data) [For65]
First k data points [Mac67, incremental k-means]

Choose a point randomly, then use always the farthest point to get k initial points
(often quite well; initial centers are often outliers, and gives similar results when run often)

Weighting points by their distance [AV07, K-means++]
Points are chosen randomly with p o min,. ||z; — ¢||* (¢ = all current seeds)

Run a few k-means iterations on a sample, then use centroids from the sample result.
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Complexity of k-means Clustering

In the standard algorithm:

1. Initialization is usually cheap, O(k) (k-means++: O(N - k - d) [AV07])

2. Reassignmentis O(N - k-d) -1

3. Mean computation is O(N - d) - i

4. Number of iterations i € 22(VN) [AVO06] (but fortunately, usually i < N)

5. Total: O(N -k -d - i)
Worst case is superpolynomial, but in practice the method will usually run much better than n?2.
We can force a limit on the number of iterations, e.g., ¢ = 100, with little loss in quality usually.

In practice, often the fastest clustering algorithm we use.

Improved algorithms primarily reduce the number of computations for reassignment,
but usually with no theoretical guarantees (so still O(N - k - d) - i worst-case)
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Clusters Changes are Increasingly Incremental
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #1
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3:
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #3
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #4
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #5
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #6
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #7
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #8
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #9
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #10
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #11
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #12
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Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #13
0.9 T

0.8 T
0.7 1+
0.6 T
0.5 1
0.4

0.3 1

0.2 1

0.1

0 01 02 03 04 05 06 07 08 09 1
Dlanca Aa At nvint thaca clidac  caun A tran
Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Partitioning Methods 3:44/153

Clusters Changes are Increasingly Incremental

Convergence on Mouse data set with k = 3: Iteration #14
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Clusters Changes are Increasingly Incremental

s,

Convergence on Mouse data set with k = 3:

3:44/153
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Benefits and Drawbacks of k-means

Benefits:
» Very fast algorithm (O(k - d - N), if we limit the number of iterations)

» Convenient centroid vector for every cluster
(We can analyze this vector to get a “topic”)

» Can be run multiple times to get different results
Limitations:

» Difficult to choose the number of clusters, k

v

Cannot be used with arbitrary distances

v

Sensitive to scaling — requires careful preprocessing
> Does not produce the same result every time

» Sensitive to outliers (squared errors emphasize outliers)

v

Cluster sizes can be quite unbalanced (e.g., one-element outlier clusters)
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Choosing the “Optimum” k for k-means

A key challenge of k-means is choosing k:

>

Trivial to prove: SSQqptimum k. = SSQoptimum,k+1-
» Avoid comparing SSQ for different k or different data (including normalization).

SSQp—n = 0 — “perfect” solution? No: useless.
SSQ;, may exhibit an “elbow” or “knee”: initially it improves fast, then much slower.

Use alternate criteria such as Silhouette [Rou87], AIC [Aka77], BIC [Sch78; ZXF08].
» Computing silhouette is O(n?) - more expensive than k-means.

» AIC, BIC try to reduce overfitting by penalizing model complexity (= high k).
More details will come in evaluation section.

Nevertheless, these measures are heuristics — other k can be better in practice!

Methods such as X-means [PM00] split clusters as long as a quality criterion improves.
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Example: Choosing the “Optimum” k /2

Toy “mouse” data set:

Erich Schubert
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This toy data set is
difficult for k-means
because the clusters
have very different
sizes (i.e., extend)
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Example: Choosing the “Optimum” k /2

On the toy (mouse) data set:
Best results for 25 initializations, k = 1 ... 20:

3:47/153

0.5 is not considered
to be a good Silhouette

35
307]

25

15

Sum of Squares

10

20 -

Min +

Knee?

Mean > Max

Typical SSQ curve

0.6

0.4

03

Silhouette

Number of clusters k

Min +

T T T T T T
Mean > Max ¥ Best SSQ H

k = 3 is best,
but £ = 5 is similar B

All tested measures either prefer 3 or 5 clusters.

Erich Schubert
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Example: Choosing the “Optimum” k /2

Toy “mouse” data set with k = 3:
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Example: Choosing the “Optimum” k /2

Toy “mouse” data set with k = 5:
09 T

0.8 T
0.7 T
0.6 T
0.5 T

0.4 T

0.1 + + + + + + + + y 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering

Partitioning Methods

Example: Choosing the “Optimum” k /2

Toy “mouse” data set:

Erich Schubert

Best with & = 3:

Best with &k = 5:
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k-means and Distances

Could we use a different distance in the k-means?

SSQ’ = ZC inec dist(z; — pe)

We can still assign every point to the closest center.
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k-means and Distances
Could we use a different distance in the k-means?
I ] P
SSQ = ZC inec dist(z; — o)
We can still assign every point to the closest center.

But: is the mean the optimum cluster center?
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k-means and Distances

Could we use a different distance in the k-means?

SSQ’ = dist(z; —
@=> Zmec ist(wi — pc)
We can still assign every point to the closest center.

But: is the mean the optimum cluster center?

The mean is a least-squares estimator in R, i.e., it minimizes ||2; 4 — pic.4||”

That does not imply the mean minimizes other distances!

Counter example: 1, 2,3, 4,10 € R; Euclidean distance becomes |x; — m| (no square!)
The mean is m = 4. Mean distance: 2.4 The median is m = 3. Mean distance: 2.2
» the mean does not minimize linear Euclidean distance, Manhattan distance, ...

The k-means algorithm minimizes Bregman divergences [Ban+05].
For other distances, we need to replace the “mean” in k-means.
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k-means Variations for Other Distances

k-medians: instead of the mean, we use the median in each dimension. [BMS96]
For use with Manhattan norm ||z; — m;||;.

k-modes: use the mode instead of the mean. [Hua98]
For categorical data, using Hamming distance.

k-prototypes: mean on continuous variables, mode on categorical. [Hua98]
For mixed data, using squared Eucldiean respectively Hamming distance.

k-medoids: using the medoid (element with smallest distance sum).
For arbitrary distance functions.

Spherical k-means: use the mean, but normalized to unit length.
For cosine distance.

Gaussian Mixture Modeling: using mean and covariance.
For use with Mahalanobis distance.
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k-means for Text Clustering

Cosine similarity is closely connected to squared Euclidean distance.

Spherical k-means [DMO01] uses:

> Input data is normalized to have ||z;|| = 1

v

At each iteration, the new centers are normalized to g := |ljuc| =1

> L minimizes average cosine similarity [DMO01]
xiEC xZEC

» Sparse nearest-centroid computations in O(d') where d’ is the number of non-zero values

v

Result is similar to a SVD factorization of the document-term-matrix [DM01]
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Pre-processing and Post-processing

Pre-processing and post-processing commonly used with k-means:
Pre-processing:
> Scale / normalize continuous attributes to [0; 1] or unit variance.

» Encode categorical attributes as binary attributes.

» Eliminate outliers

Post-processing

v

Eliminate clusters with few elements (probably outliers)

v

Split “loose” clusters, i.e., clusters with relatively high SSE

v

Merge clusters that are “close” and that have relatively low SSE

v

Can use these steps during the clustering process
E.g., ISODATA algorithm [BH65], X-means [PM00], G-means [HE03]

Erich Schubert Knowledge Discovery in Databases
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Limitations of k-means

k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — badly chosen k:
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k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — badly chosen k:
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3:52/153

k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — different diameter:

Erich Schubert
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k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — different diameter:
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Limitations of k-means

k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — scaling:
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Limitations of k-means

k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.

Example — scaling:
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Limitations of k-means

3:52/153

k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
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Limitations of k-means

k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — different densities:
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k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
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k-means has problems when clusters are of differing sizes, densities, or have non-spherical shape
k-means has problems when the data contains outliers.
Example — cluster shapes:
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k-medoids Clustering

This approach tries to improve over two weaknesses of k-means:
> k-means is sensitive to outliers (because of the squared errors)

> k-means cannot be used with arbitrary distances.

Idea: The medoid of a set is the object with the least distance to all others.
» The most central, most “representative” object
k-medoids objective function: absolute-error criterion

k
TD = Z Z dist(x;, m;)

i=1 ac]ECi
where m; is the medoid of cluster C;.

As with k-means, the k-medoid problem is NP-hard.

The algorithm Partitioning Around Medoids (PAM) guesses a result, then uses iterative
refinement, similar to k-means.
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Partitioning Around Medoids

Partitioning Around Medoids (PAM, [KR90])

>

>

choose a good initial set of medoids

iteratively improve the clustering by doing the best (m;, 0;) swap,
where m; is a medoid, and o0, is a non-medoid.

if we cannot find a swap that improves TD, the algorithm has converged.

good for small data, but not very scalable

Erich Schubert Knowledge Discovery in Databases
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Algorithm: Partitioning Around Medoids
PAM consists of two parts:
PAM BUILD, to find an initial clustering:

Algorithm: PAM BUILD: Find initial cluster centers

1 my < point with the smallest distance sum TD to all other points
2 fori=2...k do

3 | my; < point which reduces TD most

4 return TD, {my,...,my}
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Algorithm: Partitioning Around Medoids
PAM consists of two parts:
PAM BUILD, to find an initial clustering:

Algorithm: PAM BUILD: Find initial cluster centers

1 my < point with the smallest distance sum TD to all other points
2 fori=2...k do

3 ‘ m; < point which reduces TD most

4 return TD, {my,...,my}

This needs O(n?k) time, and is best implemented with O(n?) memory.

We could use this to seed k-means, too. But it is usually slower than a complete k-means run.
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Algorithm: Partitioning Around Medoids /2
PAM SWAP, to improve the clustering:

Algorithm: PAM SWAP: Improve the clustering

repeat
form; € {my,...,my} do
for Cj Q/ {ml, ‘e .,mk} do

TD’ < TD with ¢; medoid instead of m;

Remember (m;, ¢;, TD') for the best TD'
stop if the best TD’ did not improve the clustering
swap (m;, ¢;) of the best TD’
return TD, M, C

® NN G A W N =
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Algorithm: Partitioning Around Medoids /2
PAM SWAP, to improve the clustering:

Algorithm: PAM SWAP: Improve the clustering

1 repeat

2 | form; € {mq,...,my} do

3 forc; ¢ {m1,...,my} do

4 TD’ < TD with ¢; medoid instead of m;

5 Remember (m;, ¢;, TD') for the best TD'

6 | stop if the best TD' did not improve the clustering
7 | swap (mi,c;j) of the best TD’

8 return TD, M, C

This needs O(k(n — k)?) time for each iteration i.

The authors of PAM assumed, that only few iterations will be needed,
because the initial centers are supposed to be good already.
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Algorithm: CLARA (Clustering Large Applications) [KR90]

Algorithm: CLARA: Clustering Large Applications

1 TDbestv Mbesta Cbest < 00, q)a Q)

2 fori=1...5do

3 S; < sample of 40 + 2k objects

4 M; < medoids from running PAM(S;)

5 TD;, C; < compute total deviation and cluster assignment using M;
6

7

8

if TD; < TDyest then
TDbest7 Mbesta Cbest <~ TDI? Mi: Cz
return T ' Dyest, Myest, Chest

» sampling-based method: apply PAM to a random sample of whole dataset

> builds clustering from multiple random samples and returns best clustering as output
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Algorithm: CLARA (Clustering Large Applications) [KR90]

Algorithm: CLARA: Clustering Large Applications

1 TDbestv Mbesta Cbest < 00, q)a @

2 fori=1...5do

3 S; < sample of 40 + 2k objects

4 M; < medoids from running PAM(S;)

5 TD;, C; < compute total deviation and cluster assignment using M;
6

7

8

if TD; < TDyest then
TDbest7 Mbesta Cbest <~ TDI? Mi: Cz
return T ' Dyest, Myest, Chest

» sampling-based method: apply PAM to a random sample of whole dataset

> builds clustering from multiple random samples and returns best clustering as output
» runtime complexity: O(ks? + k(n — k)) with sample size s =~ 40 + 2k

> applicable to larger data sets but the result is only based on a small sample

» samples need to be “representative”, medoids are only chosen from the best sample
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Algorithm: CLARANS [NH02]

Algorithm: CLARANS: Clustering Large Applications based on RANdomized Search

1 TDbestv Mbestv Cbest < 00, @, @
2 for! =1...numlocal do // Number of times to restart

3 M; <+ random medoids

4 | TDy,C) < compute total deviation and cluster assignment using M;

5 for i = 1...maxneighbor do // Attempt to improve the medoids
6 m;, o, < randomly select a medoid m;, and a non-medoid o,

7 TDj, C] < total deviation when replacing m; with oy,

8 if TD; < TD; then // swap improves the result
9 m;, TDy, C; < oy, TDy, C| // accept the -{improvement
10 11 // restart inner loop

1 if TD; < TDpest then // keep overall best result
12 ‘ TDpest, Mpest; Chest < TDy, My, C;

13 return TDyegr, Mpest, Chest
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Algorithm: CLARANS [NHO02] /2

Clustering Large Applications based on RANdomized Search (CLARANS) [NH02]
> considers at most maxneighbor many randomly selected pairs to find one improvement

> replace medoids as soon as we found a better candidate,
rather than testing all k - (n — k) alternatives for the best improvement possible

» search for k “optimal” medoids is repeated numlocal times
(c.f., restarting multiple times with k-means)

» complexity: O(numlocal - maxneighbor - swap - n)
» good results only if we choose maxneighbor large enough

> in practice the typical runtime complexity of CLARANS is similar to O(n?)
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k-medoids, Lloyd style

We can adopt Lloyd’s approach also for k-medoids:

Algorithm: k-medoids with alternating optimization [Ach+12]

1 {m1,...,my} < choose k random initial medoids

2 repeat

3 {C1,...,C}} < assign every point to the nearest medoid’s cluster

4 | stop if no cluster assignment has changed

5 foreach cluster C; do

6 ‘ m; <— object with the smallest distance sum to all others within C;
7 return TD, M, C

> similar to k-means, we alternate between (1) optimizing the cluster assignment,
and (2) choosing the best medoids.

» can update all medoids in each iteration.

» complexity: O(k - n + n?) per iteration, comparable to PAM
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From k-means to Gaussian EM Clustering

Clustering  Partitioning Methods

k-means can not handle clusters with different “radius” well.

Toy “mouse” data set:

01 02 03 04 05 06 07 08 09

09

Best 3-means:

3:61/153

Best 5-means:

01 02 03 04 05 06 07

» could we estimate mean and radius?

» model the data with multivariate Gaussian distributions

Erich Schubert
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Expectation-Maximization Clustering

EM (Expectation-Maximization) is the underlying principle in Lloyd’s k-means:

1. Choose initial model parameters

2. Expect latent variables (e.g., cluster assignment) from € and the data.
3. Update 6 to maximize the likelihood of observing the data

4. Repeat (2.)-(3.) until a stopping condition holds
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Expectation-Maximization Clustering

EM (Expectation-Maximization) is the underlying principle in Lloyd’s k-means:

1. Choose initial model parameters

2. Expect latent variables (e.g., cluster assignment) from € and the data.
3. Update 6 to maximize the likelihood of observing the data

4. Repeat (2.)-(3.) until a stopping condition holds

Recall Lloyd’s k-means:
1. Choose k centers randomly (6: random centers)
2. Expect cluster labels by choosing the nearest center as label
3. Update cluster centers with maximum-likelihood estimation of centrality
4. Repeat (2.)-(3.) until change =0

Objective: optimize SSQ.
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Expectation-Maximization Clustering

EM (Expectation-Maximization) is the underlying principle in Lloyd’s k-means:

1. Choose initial model parameters

2. Expect latent variables (e.g., cluster assignment) from € and the data.
3. Update 6 to maximize the likelihood of observing the data

4. Repeat (2.)-(3.) until a stopping condition holds

Gaussian Mixture Modeling (GMM): [DLR77]
1. Choose k centers randomly, unit covariance, and uniform weight:
0 = (p1, X1, wi, po, X, wa, - - fky s, W)
2. Expect cluster labels based on Gaussian distribution density

3. Update Gaussians with mean and covariance matrix
4. Repeat (2.)-(3.) until change < ¢

Objective: Optimize log-likelihood: log L(0) := ) log P(x | 0)
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3:63/153
Gaussian Mixture Modeling & EM
The multivariate Gaussian density with center p; and covariance matrix X; is:
i) = ; A S 7l((x7“i)TE;l($*Hi))
P(x | C;) =pdf(z, pu;, 35) : STl ¢ 2
For the Expectation Step, we use Bayes’ rule: | 2
P(C; | x) is the relative
P(C;|x) = pdf(z, pi, %) P(Ci) “responsibility” of C; for point z
P(z) P(Cj|x) proportional to w; - pdf,
Using P(C;) = w; and the law of total probability: P(Ci| x) o< wipdf(p, pi, Xi)
;pdf iy 24
P(CZ ’ ﬂf) _ wip (phuh 1)
> wipdf(p, pj, X5)

For the Maximization Step:
Use weighted mean and weighted covariance to recompute cluster model.
i _m Z C ‘ .’E).’EJ weighted X / Sxy

¢ cluster, j, k dimensions

ik =s—piora O, P(Ci | @)(x; — ng) (e — )
w; =P(C _IX\Z (Ci | x)
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Fitting Multiple Gaussian Distributions

Probability density function of a multivariate Gaussian:

1 ()T (e
pdf(z, u,¥) i = —— ¢ 3 ((@=n) (z—n))
AVeET
If we constrain ¥ we can control the cluster shape:
> We always want symmetric and positive semi-definite

» X covariance matrix: rotated ellipsoid (A)

v

Y, diagonal (“variance matrix”): ellipsoid (B)

v

Y scaled unit matrix: spherical (C)

v

Same X for all clusters, or different X; each
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Understanding the Gaussian Density

Multivariate normal distribution:

pdf (@, p, ¥

1-dimensional normal distribution:

pdf(z, p, 0

Erich Schubert

S S 1 (C D )
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Understanding the Gaussian Density

Multivariate normal distribution:

1 1 Ts—1
df(z, 1, %) = - 1 (CaVDRRRCED)
pdf(z, u, ) 2]
1-dimensional normal distribution:
df (z, 1, 0) L ()
T U, 0) i =———-¢€ v
P a (2m)o
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Understanding the Gaussian Density

Multivariate normal distribution:

1 1 Ts—1
df (z, pu, 2 S e (DR R CD)
pdf(z, u, ) 2]
1-dimensional normal distribution:
1 7l((;rfu)072(mf,u))
df(z,p,0) =———=-¢€ 2
pdf(z, p, o) 2n)o?
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Understanding the Gaussian Density

Multivariate normal distribution:
1

RICITID)) F—
pdf(z, u, ¥) 2]

ez (@S @—p))
1-dimensional normal distribution:

1 -1 xr— 0'72 Tr—
pdf(xhu‘a U) ::\/W .e 2(( ©) ( /,L))

Normalization (to a total volume of 1) and squared deviation from center
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Understanding the Gaussian Density

Multivariate normal distribution:
1

e 3 (@) @)
(2m)¢ 12|

pdf(z, u, X) :=

1-dimensional normal distribution:
1
pdf(z,u,0) i=——m—-
(z, 1, 0) n)ot

Normalization (to a total volume of 1) and squared deviation from center
Compare this to Mahalanobis distance:

o3 (@=mo 2 (@—n))

dMahalanobis(x7 122 E) :\/(w - M)TE_I(:E - /J’)
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Understanding the Gaussian Density

Multivariate normal distribution:
1

e 3 (@) @)
(2m)¢ 12|

pdf(z, u, X) :=

1-dimensional normal distribution:
1
pdf(z,u,0) i=——m—-
(z, 1, 0) n)ot

Normalization (to a total volume of 1) and squared deviation from center
Compare this to Mahalanobis distance:

o3 (@=mo 2 (@—n))

dMahalanobis(x’ M, 2)2 = ('T - M)Tz_l(x - :u)
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Understanding the Gaussian Density
Multivariate normal distribution:
1

L e e )
(2m)9|%]

pdf(z, u, X) :=
1-dimensional normal distribution:

1 (o2 (r—

(o .0) e L g H o)
V (2m)o?

Normalization (to a total volume of 1) and squared deviation from center

Compare this to Mahalanobis distance:

dMahalanobis(xa M, 2)2 = (-T — u)TE_l(,r — /L)

» /351 plays a central role here, the remainder is squared Euclidean distance!
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Decomposing the Inverse Covariance Matrix - X1

Covariance matrixes are symmetric, non-negative on the diagonal, and can be inverted.
(This may need a robust numerical implementation; ignore constant attributes)

We can use the eigendecomposition to factorize X into:
¥ =VAV™' and, therefore, L' =VA'V!

where V' is orthonormal and contains the eigenvectors = rotation
and A is diagonal  and contains the eigenvalues = squared scaling.

(You may want to refresh your linear algebra knowledge.)
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Decomposing the Inverse Covariance Matrix - X1 /2

Based on this decomposition ¥ = VAV ™1, let \; be the diagonal entries of A.
_1
Build Q using w; = h = A; 2. Then QT = Q (because it is diagonal) and A~1 = QT Q.
sh=vAaTlvTt=volav! = @vh)Tav’
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Decomposing the Inverse Covariance Matrix - X1 /2

Based on this decomposition ¥ = VAV ™1, let \; be the diagonal entries of A.
Build €2 using w; = \/)\771 = )\Z_% Then Q7 = Q (because it is diagonal) and A=t = QT Q.
sTh=vAalvi=vatav! = qvhTav?”
df2\4ahalanobis = (x - M)Tz_l(x - :LL)
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Decomposing the Inverse Covariance Matrix - X1 /2

Based on this decomposition ¥ = VAV ™1, let \; be the diagonal entries of A.
Build €2 using w; = \/)\771 = )\Z_% Then Q7 = Q (because it is diagonal) and A=t = QT Q.
sTh=vAalvi=vatav! = qvhTav?”
df2\4ahalanobis = (x - M)Tz_l(x - :LL)
— (o — @@V (z — p)
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Decomposing the Inverse Covariance Matrix - X1 /2
Based on this decomposition ¥ = VAV ™1, let \; be the diagonal entries of A.
Build €2 using w; = \/)\771 = )\Z_% Then Q7 = Q (because it is diagonal) and A=t = QT Q.
sTh=vAalvi=vatav! = qvhTav?”
Dopaatanobis = (& — 1) X7z — p)
— (o — @@V (z — p)
= (VT (@ — ), T (z — p))
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Decomposing the Inverse Covariance Matrix - X1 /2

Based on this decomposition ¥ = VAV ™1, let \; be the diagonal entries of A.
1

Build €2 using w; = \/)\771 =\, 2. Then QT = Q (because it is diagonal) and A~! = QT Q.

=vAlvTt=volovT = (avh)TavT
Aahatanobis = (z — 1) X7 (& — p)
= (z— @OV (z - p)
= <QVT(3L" w), QVT (z — 1))
= v @ -l

» Mahalanobis ~ Euclidean distance in a rotated, scaled space.

VT rotation that rotates eigenvectors to the coordinate axes
Q: scale coordinates such that the eigenvalues become unit

After this transformation, the new covariance matrix is the unit matrix!

Winter Semester 2017/18
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Decomposing the Inverse Covariance Matrix - 37! /2

Example of projecting the data with QV7:

100

90 1
&
.1
4
T
gc‘ﬂ‘“”&# it
i *:““MM
& PR S SR
L B P& &
& oD AL
y
% i R 3
& b Thep % L T
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Algorithm: EM Clustering

The generic EM clustering algorithm is:

Algorithm: EM Clustering

1 6 < choose initial model

2 log £ < log likelihood of initial model

3 repeat

4 | P(C;|x) + expect probabilities for all x
0 < maximize new model parameters
IOg Eprevious <~ IOg L

log £ <+ log likelihood of new model 6
stop if |log Lprevious — log L] < €

// Expectation Step
// Maximization Step

// Model Evaluation

o N N G

The log likelihood log £ := )" log P(x | §) =Y log (>, w;P(x | C;))
is improved by both the E-step, and the M-step.

For Gaussian Mixture modeling, 6 = (p1, X1, w1, pi2, Yo, Wa, - . ., fhk, Lk, W)

In contrast to k-means, we need to use a stopping threshold, because the change will not become

0.
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:

0.9 7

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

01 02 03 04 05 0.6 07 08

Please do not print these slides — save a tree.

Erich Schubert

Knowledge Discovery in Databases

0.9

3:70/153

Iteration #3

Winter Semester 2017/18



Clustering  Model Optimization Methods

Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
o

Iteration #40

01 02 03 0.4 05 0.6 0.7

Please do not print these slides — save a tree.

Erich Schubert

Knowledge Discovery in Databases

08 09 1

Winter Semester 2017/18



Clustering  Model Optimization Methods 3:70/153

Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:
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Gaussian Mixture Modeling Example

Clustering mouse data set with k = 3:

Please do not print these slides — save a tree.
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GMM with the EM Algorithm: Discussion

Complexity of Gaussian Mixture Modeling:

» O(n-k-d+k-d?) for each iteration
(with a simpler diagonal ¥ model: O(n - k - d))

> in general, number of iterations is quite high
» numerical issues require a careful implementation
» for covariance estimation, we need a lot of data. Should be n > kd?.
As it is the case for k-means and k-medoid, result and runtime very much depend on
> initial choice of model parameters 6
> in particular, a good choice of parameter k

» data needs to contain Gaussians

Modification for a partitioning of the data points into £ disjoint clusters:
every point is only assigned to the cluster to which it belongs with the highest probability

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering ~ Model Optimization Methods 3:72/153

Clustering Other Data with EM

We cannot use Gaussian EM on text:
> text is not Gaussian distributed.
> text is discrete and sparse, Gaussians are continuous.

» covariance matrixes have O(d?) entries:
» memory requirements (text has a very high dimensionality d)
» data requirements (to reliably estimate the parameters, we need very many data points)

» matrix inversion is even O(d?)

But the general EM principle can be used with other distributions.
For example, we can use a mixture of Bernoulli or multinomial distributions.

» PLSI/PLSA uses multinomial distributions [Hof99].
» clickstreams can be modeled with a mixture of Markov models [Cad+03; YH02]

» fuzzy c-means is a “soft” k-means (but without a parametric model) [Dun73; Bez81]

> many more
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Limitations of Gaussian Mixture Modeling

Gaussian Mixture Modeling works much better than k£ means if the data consists of Gaussians.
But it otherwise shares many of the limitations.
Example — badly chosen k:
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Limitations of Gaussian Mixture Modeling

Gaussian Mixture Modeling works much better than k£ means if the data consists of Gaussians.
But it otherwise shares many of the limitations.
Example — badly chosen k:
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Example — different diameter:
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Gaussian Mixture Modeling works much better than k£ means if the data consists of Gaussians.
But it otherwise shares many of the limitations.
Example — different densities:
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Gaussian Mixture Modeling works much better than k£ means if the data consists of Gaussians.
But it otherwise shares many of the limitations.
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Limitations of Gaussian Mixture Modeling

Gaussian Mixture Modeling works much better than k£ means if the data consists of Gaussians.
But it otherwise shares many of the limitations.
Example — cluster shapes:
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Density-based Clustering: Core Idea

Density connected regions form clusters:
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Density-based Clustering: Core Idea
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Density-based Clustering: Core Idea

Density connected regions form clusters:
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Density-based Clustering: Foundations

Idea
> clusters are regions with high object density
> clusters are separated by regions with lower density

> clusters can be of arbitrary shape (not just spherical)

Core assumptions for density-based clusters
> objects of the cluster have “high” density (e.g., above a specific threshold)

> a cluster consists of a connected region of high density
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Density-based Clustering: Foundations /2

Dense objects (“core objects”)
» parameters ¢ > 0 and minPts > 1 specify a “density threshold”
> an object p € O (O being set of objects) is a core object if
|N:(p)| > minPts where N.(p) = {q € O|dist(p,q) < e}
Direct density reachability:

An object g € O is direct-density-reachable from p (denote as ¢ <0 p or p B> q)
if and only if p is a core point, and dist(p, ¢) < e.

minPts = 4 @

o0 90
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Dense objects (“core objects”)
» parameters ¢ > 0 and minPts > 1 specify a “density threshold”
> an object p € O (O being set of objects) is a core object if
|N:(p)| > minPts where N.(p) = {q € O|dist(p,q) < e}
Direct density reachability:

An object g € O is direct-density-reachable from p (denote as ¢ <0 p or p B> q)
if and only if p is a core point, and dist(p, ¢) < e.
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Density-based Clustering: Foundations /2

Dense objects (“core objects”)
» parameters ¢ > 0 and minPts > 1 specify a “density threshold”
> an object p € O (O being set of objects) is a core object if
|N:(p)| > minPts where N.(p) = {q € O|dist(p,q) < e}
Direct density reachability:

An object g € O is direct-density-reachable from p (denote as ¢ <0 p or p B> q)
if and only if p is a core point, and dist(p, ¢) < e.

minPts = 4 @ n is not core.

c is a core point.
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Density-based Clustering: Foundations /2

Dense objects (“core objects”)
» parameters ¢ > 0 and minPts > 1 specify a “density threshold”
> an object p € O (O being set of objects) is a core object if
|N:(p)| > minPts where N.(p) = {q € O|dist(p,q) < e}
Direct density reachability:

An object g € O is direct-density-reachable from p (denote as ¢ <0 p or p B> q)
if and only if p is a core point, and dist(p, ¢) < e.

minPts = 4 @ n is not core.
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Density-based Clustering: Foundations /2

Dense objects (“core objects”)
» parameters ¢ > 0 and minPts > 1 specify a “density threshold”
> an object p € O (O being set of objects) is a core object if
|N:(p)| > minPts where N.(p) = {q € O|dist(p,q) < e}
Direct density reachability:

An object g € O is direct-density-reachable from p (denote as ¢ <0 p or p B> q)
if and only if p is a core point, and dist(p, ¢) < e.

minPts = 4 @ n is not core.
Direct density

reachability graph

; — ¢ is a core point.
B

b is not core.
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Density-reachability and Density-connectivity
Based on direct-density-reachability for a given € and minPts, we define:

Density-reachability: q is density reachable from p (¢ < p or p > q) if and only if

there exists a chain of direct-density-reachable objects . L
> is the transitive

p=o01 >0 ...>0,=¢q closure of >
Density-connectivity: p and q are density connected (p <> q) if and only if
there exists an object r such that both p and q are density reachable from r.

pdrbgq p and ¢ can
both be border points,

We use the following notation: all others must be core

pbB>q qis direct density reachable from p

pr>q qis density reachable from p

p <1 q pand qare mutually direct-density-reachable
pD><1q pand q are mutually density-reachable

p <> q pand q are density-connected
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Density-reachability

®

Density-based cluster:
A non-empty subset C' C O is a density-based cluster, given £ and minPts, if:

(1) Maximality: Vp,q € O:if p € C and ¢ is density-reachable from p, then ¢ € C
Vp,qeO: peCAp>q=qeC

(2) Connectivity: Vp,q € C: p and q are density-connected
Vp,qge C: p<>q
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Density-reachability
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Density-based cluster:

A non-empty subset C' C O is a density-based cluster, given £ and minPts, if:
(1) Maximality: Vp,q € O:if p € C and ¢ is density-reachable from p, then ¢ € C

Vp,qeO: peCAp>q=qeC
(2) Connectivity: Vp,q € C: p and q are density-connected
Vp,qeC: p<q
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Density-reachability
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Density-based cluster:
A non-empty subset C' C O is a density-based cluster, given £ and minPts, if:

(1) Maximality: Vp,q € O:if p € C and ¢ is density-reachable from p, then ¢ € C
Vp,qeO: peCAp>q=qeC

(2) Connectivity: Vp,q € C: p and q are density-connected
Vp,qge C: p<>q
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Density-reachability

Density-based cluster:
A non-empty subset C' C O is a density-based cluster, given £ and minPts, if:

(1) Maximality: Vp,q € O:if p € C and ¢ is density-reachable from p, then ¢ € C
Vp,qeO: peCAp>q=qeC

(2) Connectivity: Vp,q € C: p and q are density-connected
Vp,qge C: p<>q
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Clustering Approach

Border and noise points:
> A point b that is not a core point, but that is density-reachable is called a border point.
> A point n that is not density-reachable is called a noise point.
Core if [N (p,€)| > minPts
Type(p) = { Border if [N(p,e)| < minPts A 3,¢>p
Noise  if |[N(p,e)| < minPts A B, ¢>p

Density-based clustering:

> a density-based clustering C of a set of objects O, given parameters € and minPts,
is a complete set of density-based clusters

» Noisec is the set of all objects in O that do not belong to any
density-based cluster C; € C,i.e., Noisec = O\ (C1U---UC})
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Abstract DBSCAN Algorithm

Density-Based Clustering of Applications with Noise:

Algorithm: Abstract DBSCAN algorithm [Sch+17a]

1 Compute neighbors of each point and identify core points // Identify core points

2 Join neighboring core points into clusters // Assign core points

3 foreach non-core point do

4 | Add to a neighboring core point if possible // Assign border points
5 Otherwise, add to noise // Assign noise points

This abstract algorithm finds
» connected components of core points such that V,, ;p <1 ¢ (lines 1 + 2)
> + their “border point” neighbors
> remaining points are noise
The original DBSCAN algorithm [Est+96] is a database oriented, iterative algorithm to solve this.

The successor algorithm HDBSCAN* [CMS13] only uses p <1 g, all non-core points are noise.
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DBSCAN Algorithm
DBSCAN KDD’96 high-level view:

1. begin with any yet unlabeled core point p (if it is not core, label it as “noise” and repeat)

2. begin a new cluster C;, and continue with its neighbors N = N (p, ¢)

3. for each neighbor n € N:
3.1 if n is already labeled by some cluster,’ continue with the next n
3.2 label n as cluster C;
3.3 if n core, N < N UN(n,¢)

4. when we have processed all (transitive) neighbors IV, the cluster is complete
5. continue until there is no unlabeled point
Since the initial point is core, for all its neighbors n we have p > n.
For each n that is core, and each neighbor n’, we have n > n/, and therefore p > n’.

» it is easy to see that this constructs density-connected clusters according to the definition.

*Non-core points can be “noise”, or can be reachable from more than one cluster.
In this case we only keep one label, although we could allow multi-assignment.
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Algorithm: Pseudocode of original sequential DBSCAN algorithm [Est+96; Sch+17a]

Data: label: Point labels, initially undefined

1 foreach point p in database DB do //
2 if label(p) # undefined then continue //
3 Neighbors N + RANGEQuUERY(DB, dist, p, €) //
4 if [N| < minPts then //
5 label(p) + Noise

6 continue

7 ¢ < next cluster label //
8 label(p) « ¢

9 Seed set S < N\ {p} //
10 foreach ¢ in S do

1 if label(¢) = Noise then label(q) + ¢

12 if label(g) # undefined then continue

13 Neighbors N <— RANGEQuUERY(DB, dist, g, €)

14 label(q) « ¢

15 if |[N| < minPts then continue !/
16 S+ SUN

Iterate over every point
Skip processed points
Find initial neighbors
Non-core points are noise

Start a new cluster

Expand neighborhood

Core-point check
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DBSCAN Algorithm /3

Properties of the algorithm
> on core points and noise points, the result is exactly according to the definitions

> border points are only in one cluster, from which they are reachable
(This could trivially be allowed, but is not desirable in practise!)

» complexity: O(n - T') with T' the complexity to find the e-neighbors
In many applications T" =~ log n with indexing, but this cannot be guaranteed.
Typical indexed behavior then is n log n, but worst-case is O(n?) distance computations.

Challenges
> how to choose € and minPts?
» which distance function to use?
» which index for acceleration?

how to evaluate the result?

v
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DBSCAN example

12
11 %\ e=1.75
10 OROROe(d) minPts = 4
9 ® ©
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DBSCAN example
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DBSCAN example

12
11 %\ e=1.75
10 ORI minPts = 4
9 ) ©
8 Seeds
7
6
5 ®
4
3
2 4
1 4

1 23 456 7 8 9 1011 12

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Density-Based Methods 3:84/153

DBSCAN example

12
11 %\ e=1.75
10 OROROe(d) minPts = 4
9 ©
8 Seeds
7
6
5 ®
4
3
2 4
1 4

1 23 456 7 8 9 1011 12

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Density-Based Methods 3:84/153

DBSCAN example

12
11 /JD e=1.75
10 oD K minPts = 4
9 ©
8 Seeds
7
6
5 ®
4
3
2 4
1 4

1 23 456 7 8 9 1011 12

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Density-Based Methods 3:84/153
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Choosing DBSCAN parameters

Choosing minPts:
> usually easier to choose
> heuristic: 2xdimensionality [Est+96]

» choose larger values for large and noisy data sets [Sch+17a]

Choosing e:
> too large clusters: reduce radius € [Sch+17a]
» too much noise: increase radius € [Sch+17a]

» first guess: based on distances to the (minPts — 1)-nearest neighbor [Est+96]

Detecting bad parameters: [Sch+17a]
> ¢ range query results are too large = slow execution
» almost all points are in the same cluster (largest cluster should be < 20% to < 50% usually)
» too much noise (should usually be < 1% to < 30%, depending on the application)
Erich Schubert
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Choosing DBSCAN parameters /2

Example: minPts = 4, therefore plot 3-nearest-neighbor distances:

minPts =4 @

©

OO ®

3NN distance
W

data points
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Choosing DBSCAN parameters /2

Example: minPts = 4, therefore plot 3-nearest-neighbor distances:

minPts =4 @

© 5

QOO@

@ O

3NN distance
W

2 4

1 4

0 >
sorted data points

Sort the distances, look for a knee, or choose a small quantile.
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Choosing DBSCAN parameters /2
Example: minPts = 4, therefore plot 3-nearest-neighbor distances:
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Choosing DBSCAN parameters /2

Example: minPts = 4, therefore plot 3-nearest-neighbor distances:

minPts =4 @

5+ first “knee”
4 4

3+ /

2 4

1 4

0 >
sorted data points

3NN distance

Sort the distances, look for a knee, or choose a small quantile.
= Suggested parameter for minPts = 4ise =~ 2.5

With an index, this takes about n - log n time, O(n?) without.

On large data, we can query only a subset to make this faster.
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Choosing DBSCAN parameters /3

Heuristics on the mouse data set.
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Choosing DBSCAN parameters /3

Heuristics on the mouse data set.
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Choosing DBSCAN parameters /3

Heuristics on the nested clusters data set.
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Choosing DBSCAN parameters /3

Heuristics on the nested clusters data set.
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0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700

Objects
» only a heuristic — there are no “correct” parameters (in particular with hierarchies)

» on Gaussian distributions with different densities, we often get a smooth curve

» sometimes, we see multiple “knees”, sometimes none
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Generalized Density-based Clustering [San+98]

Motivation

> traditional clustering approaches are designed for point coordinate objects

> apply clustering to other types of data
» geospatial data such as polygons
data with a notion of similarity, but not a distance
graph and network data
pixel data

vV vy VvVyy

Generalize the notion of density in DBSCAN:

¢ threshold d(p,q) <e — Neighbor predicate NPred(p, q)
€ range query N(p) :={q | d(p,q) <e} — Neighborhood N(p) :={q | NPred(p,q)}
minPts threshold [N (0)| > minPts — Core predicate IsCore(N (0))

Example neighbor predicates: polygon overlap, pixel adjacency, similarity, ...
Example core predicates: count, total polygon area, homogenity, ...
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Accelerated DBSCAN Variations

Methods for finding the same result, but faster:

Grid-based Accelerated DBSCAN [MMO08]
» Partition the data into grid cells, overlapping by
» Run DBSCAN on each cell
> Merge the results into a single clustering

» For Minkowski L,, distances

Anytime Density-Based Clustering (AnyDBC) [MAS16]

> avoids doing a e-range-query for every point

v

cover the data with a non-transitive set of “primitive clusters”

» infer “core” property also by counting how often a point is found

v

query only points that may cause primitive clusters to merge

» some points will remain “maybe-core” (border or core)
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Improved DBSCAN Variations

Methods that aim at improving the results or usability of DBSCAN:
Locally Scaled Density Based Clustering (LSDBC) [BY07]

> estimate density of each point
> always continue DBSCAN with the most dense unlabeled point
> stop expanding when the density drops below «- density of the first point

» = can find clusters of different densities

Hierarchical DBSCAN* (HDBSCAN*) [CMS13]
> clusters consists only of core points, no border points (= nicer theory; the star * in the name)
» perform a hierarchical agglomerative clustering based on density reachability
» runtime O(n?), adds the challenge of extracting clusters from the dendrogram
» inspired by OPTICS / continuation of OPTICS (next slides ...)

Many, many, more ...in 2017, people still publish new DBSCAN variations
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Density-based Hierarchical Clustering

The k-nearest neighbor distance k-dist(p) of a point p is defined as the unique distance with:
(i) for at least % objects 0 € D, o # p: dist(p,0) < k-dist(p)
(ii) for at most k — 1 objects 0 € D, o # p: dist(p,0) < k-dist(p)
The k-nearest neighbors kNN(p) of a point p are defined as:
ENN(p) ={o€ D | o # pAdist(o,p) < k-dist(p)}

S(minPts — 1)-dist is k-dist with k = minPts — 1
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Density-based Hierarchical Clustering

The k-nearest neighbor distance k-dist(p) of a point p is defined as the unique distance with:
(i) for at least % objects 0 € D, o # p: dist(p,0) < k-dist(p)
(ii) for at most k — 1 objects 0 € D, o # p: dist(p,0) < k-dist(p)

The k-nearest neighbors kNN(p) of a point p are defined as:

ENN(p) ={o € D | 0o # p Adist(o,p) < k-dist(p)}

Note: A point p is a DBSCAN core point if and only if its (minPts — 1)-dist(p) < &°

S(minPts — 1)-dist is k-dist with k = minPts — 1
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Density-based Hierarchical Clustering

The k-nearest neighbor distance k-dist(p) of a point p is defined as the unique distance with:
(i) for at least % objects 0 € D, o # p: dist(p,0) < k-dist(p)
(ii) for at most k — 1 objects 0 € D, o # p: dist(p,0) < k-dist(p)

The k-nearest neighbors kNN(p) of a point p are defined as:

ENN(p) ={o € D | 0o # p Adist(o,p) < k-dist(p)}

Note: A point p is a DBSCAN core point if and only if its (minPts — 1)-dist(p) < &°

Note: A point p is a DBSCAN core point for all ¢ > (minPts — 1)-dist(p)
= monotonicity: any DBSCAN cluster at ¢ is a subset of some DBSCAN cluster at ¢’ > ¢.

S(minPts — 1)-dist is k-dist with k = minPts — 1

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Density-Based Methods 3:91/153

Density-based Hierarchical Clustering

The k-nearest neighbor distance k-dist(p) of a point p is defined as the unique distance with:
(i) for at least % objects 0 € D, o # p: dist(p,0) < k-dist(p)
(ii) for at most k — 1 objects 0 € D, o # p: dist(p,0) < k-dist(p)

The k-nearest neighbors kNN(p) of a point p are defined as:

ENN(p) ={o € D | 0o # p Adist(o,p) < k-dist(p)}

Note: A point p is a DBSCAN core point if and only if its (minPts — 1)-dist(p) < &°

Note: A point p is a DBSCAN core point for all ¢ > (minPts — 1)-dist(p)
= monotonicity: any DBSCAN cluster at ¢ is a subset of some DBSCAN cluster at ¢’ > ¢.

» ldea: process points based on their (minPts — 1)-dist.

Can we get DBSCAN results for all € at once?

S(minPts — 1)-dist is k-dist with k = minPts — 1
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Density-based Hierarchical Clustering /2

For performance reasons, OPTICS uses e-range queries to find neighbors (discussed later).

Core-distance of an object p

. minPts — 1)-dist(p) if|N:(p)| > minPts
COI‘QDISte’mmpts(p) o {( ) ( ) ’ 6( )‘
o0 otherwise

with (minPts — 1)-dist(p) being the smallest distance for which p is a core object.
Reachability-distance’ of object p from object o

ReachDist. minpts(p <= 0) = max{CoreDist. minpts(0), dist(o,p)}

minPts =5

"This is not a distance by our definitions, because it is not symmetric! We use p <— o to emphasize this.

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering  Density-Based Methods 3:92/153

Density-based Hierarchical Clustering /2

For performance reasons, OPTICS uses e-range queries to find neighbors (discussed later).

Core-distance of an object p
. minPts — 1)-dist(p) if|N:(p)| > minPts
CoreDist. minps(p) = {< -dist(p)  iflN: (p)]
00 otherwise
with (minPts — 1)-dist(p) being the smallest distance for which p is a core object.

Reachability-distance’ of object p from object o

ReachDist. minpts(p <= 0) = max{CoreDist. minpts(0), dist(o,p)}

minPts =5 e-query radius

e-range e o

"This is not a distance by our definitions, because it is not symmetric! We use p <— o to emphasize this.
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Density-based Hierarchical Clustering /2

For performance reasons, OPTICS uses e-range queries to find neighbors (discussed later).

Core-distance of an object p

. minPts — 1)-dist(p) if|N:(p)| > minPts
COI‘QDISte’mmpts(p) o {( ) ( ) ’ 6( )‘
o0 otherwise

with (minPts — 1)-dist(p) being the smallest distance for which p is a core object.
Reachability-distance’ of object p from object o

ReachDist. minpts(p <= 0) = max{CoreDist. minpts(0), dist(o,p)}

minPts =5 e-query radius

° —> CoreDist(o)

e-range

"This is not a distance by our definitions, because it is not symmetric! We use p <— o to emphasize this.
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Density-based Hierarchical Clustering /2

For performance reasons, OPTICS uses e-range queries to find neighbors (discussed later).

Core-distance of an object p
. minPts — 1)-dist(p) if|N:(p)| > minPts
CoreDist. minps(p) = {< -dist(p)  iflN: (p)]
00 otherwise
with (minPts — 1)-dist(p) being the smallest distance for which p is a core object.

Reachability-distance’ of object p from object o

ReachDist. minpts(p <= 0) = max{CoreDist. minpts(0), dist(o,p)}

minPts =5 . e-query radius
.\1:./_/'.(] —> CoreDist(o)
*\ 0 — ReachDist(g + o)
e-range e o

"This is not a distance by our definitions, because it is not symmetric! We use p <— o to emphasize this.
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Density-based Hierarchical Clustering /2

For performance reasons, OPTICS uses e-range queries to find neighbors (discussed later).

Core-distance of an object p

. minPts — 1)-dist(p) if|N:(p)| > minPts
COI‘QDISte’mmpts(p) o {( ) ( ) ’ 6( )‘
o0 otherwise

with (minPts — 1)-dist(p) being the smallest distance for which p is a core object.
Reachability-distance’ of object p from object o

ReachDist. minpts(p <= 0) = max{CoreDist. minpts(0), dist(o,p)}

minPts =5 e-query radius

°
’\Iif/_/'.q —> CoreDist(o)
*\ 0 — ReachDist(g + o)

g-range e o — ReachDist(p < o)

"This is not a distance by our definitions, because it is not symmetric! We use p <— o to emphasize this.
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Density-based Hierarchical Clustering /2

For performance reasons, OPTICS uses e-range queries to find neighbors (discussed later).

Core-distance of an object p
. minPts — 1)-dist(p) if|N:(p)| > minPts
CoreDist. minps(p) = {< -dist(p)  iflN: (p)]
00 otherwise
with (minPts — 1)-dist(p) being the smallest distance for which p is a core object.

Reachability-distance’ of object p from object o

ReachDist. minpts(p <= 0) = max{CoreDist. minpts(0), dist(o,p)}

minPts = 5 °
* o —> CoreDist(r)
° —> ReachDist(o < r)
°
r

"This is not a distance by our definitions, because it is not symmetric! We use p <— o to emphasize this.
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OPTICS Clustering [Ank+99]

OPTICS high-level view: Process points in a priority queue ordered by lowest reachability.

1.

AR

6.

get the minimum-reachability point p from the priority queue
(if the queue is empty, choose any unprocessed point with reachability set to cc.)

query the neighbors N.(p) and determine CoreDist. pinpts
add p to the output, with its current minimum reachability and its core distance
mark p as processed

add each unprocessed neighbor n to the queue, using ReachDiste minpts(n < p),
(but only improving the reachability if the point is already in the queue)

repeat, until all points are processed

Note: the reachability of a processed point is never updated.
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OPTICS Clustering [Ank+99]

OPTICS high-level view: Process points in a priority queue ordered by lowest reachability.

1. get the minimum-reachability point p from the priority queue
(if the queue is empty, choose any unprocessed point with reachability set to cc.)

query the neighbors N.(p) and determine CoreDist. pinpts
add p to the output, with its current minimum reachability and its core distance

mark p as processed

AR

add each unprocessed neighbor n to the queue, using ReachDiste minpts(n < p),
(but only improving the reachability if the point is already in the queue)

6. repeat, until all points are processed

Note: the reachability of a processed point is never updated.

Complexity: assuming queries are in logn, we get nlogn. Worst case: O(n?)
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Cluster Order

OPTICS does not directly produce a (hierarchical) clustering but a “cluster ordering”.

The cluster order with respect to € and minPts '
. . . . 0.9 D o
> begins with an arbitrary object W E
0.8 0o
> the next object has the minimum reachability distance . F H
0.7
among all unprocessed objects discovered so far N
0.6
B G
05 x X x
Reachability plot: PR N
04 + x XX i
031 ABCD EFG H (031 Lo 2
5 \E e o A L
3 3 Xx
0.16 0.16 02 AR x
0.11 0.11 s <
0.06 0.06 o *
— CIUSter Order — ! 0 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1

The core distance can also be plotted similar, and can be used to identify noise.
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OPTICS Algorithm [Ank+99]

Algorithm: OPTICS Clustering Algorithm [Ank+99]

SeedList <— empty priority queue
ClusterOrder <— empty list
repeat
if SeedList.empty() then
if no unprocessed points then stop
(r,0) < (00, next unprocessed point) // Get an unprocessed point
else (r,0) < SeedList.deleteMin() // next point from seed list
N < RANGEQUERY(o0, dist, €) // get neighborhood
ClusterOrder.add( (7, 0, CoreDist(o, N)) ) // add point to cluster order
Mark o as processed
if p is Core then foreachn € N do // Explore neighborhood
if n is processed then continue
p < ReachDist(n < o) // compute reachability
if n € SeedList then SeedList.decreaseKey( (p,n)) // update priority queue
else SeedList.insert( (p,n))
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Priority Queues

A priority queue is a data structure storing object associated with a priority, designed for finding
the element with the lowest priority.

Several operations can be defined on priority queues, we need the following:

> Operation DELETEMIN: remove and return the smallest element by priority.
> Operation INSERT: add an element to the heap.

» Operation DEcrReASEKEY: decrease the key of an object on the heap

Trivial implementation: unsorted list & linear scanning (insert in O(1), all other in O(n))

Better implementation: binary heap = refresh your HeapSort knowledge
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Pl‘lOI‘lty Queues /2 Algorithm: Heapify-Down(array, i, x)

DELETEMIN: 1 while 2 + 1 < len(array) do

remove the first element and replace 2 .Cf%le—i_ 11 ( ) /d/ Left[ _:Tf Ld ! ndﬁ
_ . IT C < len array) ana array|c S array|c

by last, use HEAPIFY-DOwN to repair, then ¢ < c+ 1 // Right child index

and return the removed element.

4 if x < array[c| then break
INSERT: 5 array|i] < array|[c] // Pull child up
append new element, 6 t <_ ¢ // Move down
use HEAPIFY-UP to repair the heap. 7 arrayli] < @
DEcREASEKEY: Algorithm: Heapify-Up(array, i, x)
update existing element, 1 whilei > 0 do
use HEAPIFY-UP to repair the heap. 2 j[(i—1)/2] // Parent position
3 if array[j] < = then break
4 array|i] < array|[j] // Pull parent down
5 14 // Move upward
6 array[i] < x
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance

12
11

—
)

= N W R Ot N 0o ©

[T
/%\ s;1 — N;1
(e 2
Q&i{]}{@ o H;4 Ji4 | T;1| |G
) U
sl L L L]
M) o
(E) (N *Q* 5
@®)(s) 4
W 3
c)(D) P
: 1 "
] . 1
1 2 3 4 5 6 7 8 9 10 11 12 LKMPORQ

Erich Schubert

Knowledge Discovery in Databases

Winter Semester 2017/18



Clustering  Density-Based Methods

3:98/153

OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance

—_ =
N

.
~

[S—
o
- O\\
I
9
&)
L
N
on
ot
I
=
(S,
=
o
— >~

I
IR

o0
5
4
) 3 ||
D) 2
B 1
| . "IIIII

1 23456 7 8 9 1011 12 LKMPORQSNT

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18

3

G
@

¥

5s

N W s Ot I 0 ©
~
m
=Y




Clustering  Density-Based Methods 3:98/153

OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance

12
11

—
)

= N W ks OO N 0o ©

®
OOD ®
F (L
® LY
|
™ 00
® ( P 5
@®®) 4
D 3
c)(D) 2
B 1
0

1 23 456 7 8 9101112

Erich Schubert

Knowledge Discovery in Databases

LKMPORQSNTI JGHFEBDA

Winter Semester 2017/18



Clustering  Density-Based Methods 3:98/153

OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Example minPts = 4, ¢ = 5, Manhattan distance
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OPTICS Reachability Plots
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OPTICS Reachability Plots
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OPTICS Reachability Plots
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Extracting Clusters from OPTICS Reachability Plots

Horizontal cut:

>

>

merge points with reachability < € to their predecessor
result is like DBSCAN with € = height of the cut (but only needs O(n) to extract)

& method for hierarchical clusters: [Ank+99]

vV Vv vV v VY

identify “steep” points where the reachability changes by a factor of 1 — ¢
merge neighboring steep points into a steep area.

find matching pairs of “steep down” and “steep up” points

in particular the end of the cluster needs to be refined carefully

must be at least minPts points apart

can be nested in longer intervals to get a hierarchical clustering
\
Z
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Role of the Parameters € and minPts

Properties of OPTICS and its cluster order

>

the cluster order is not unique, but very much order dependent
because of starting point(s) and many identical reachability distances

reachabilities are r, = min{ReachDist(p <— n) | n comes before p A dist(p,n) < e}.

€ serves as a cut-off, and improves performance from O(n?) to possibly nlog n with indexes
too small € causes many points with reachability co = disconnected components

heuristic for €: the largest minPts-distance based on a sample of the data

larger minPts produce a smoother plot, because ReachDist = CoreDist more often
minPts < 2 - result is equivalent to single-link clustering

too small minPts can cause “chaining” effects similar to single-link

rule of thumb: minPts between 10 and 50 often works
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Other Density-based Clustering Algorithms
Mean-Shift: [FH75]
> Replace each point with the weighted average of its € neighbors.

» Points that move to the same location (4 a small threshold) form a cluster

» Runtime: O(n?) per iteration, many iterations

DenClue: [HK98]
» Use kernel density estimation
» Use gradients to find density maxima

» Approximate the data using a grid [HG07]

Density-Peak Clustering: [RL14]
» Estimate density of each point
> Every point connects to the nearest neighbor of higher density

» Runtime: O(n?); needs user input to select clusters
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Biclustering & Subspace Clustering

Popular in gene expression analysis.

> Every row is a gene ¢ q
or transpose

\4

Every column is a sample

» Only a few genes are relevant

» No semantic ordering of rows or columns
> Some samples may be contaminated

« I 2

» Numerical value may be unreliable, only “high” or “low

» Key idea of biclustering: Cheng and Church [CC00]
Find a subset of rows and columns (submatrix, after permutation),
such that all values are high/low or exhibit some pattern.
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Bicluster Patterns [CCO00]

Some examples for bicluster patterns:

111111 112(3]4|5]|6 T(1(1]1|1|1 1/2|3|4(5|6 112(4]0(4|3
111111 112(314|5]|6 212121222 2|13(4(5]6|7 316(12/0(12]9
1111111 112(3]4]5|6 313(3|13|3]|3 3|14(5(6|7|8 21418086
1111111 112(3]4]5|6 41414444 4|15|6(7[8|9 418(16/0|16[12
1111111 112(3]4|5|6 5(5[5(5|5]|5 5(6[7(8|9]10 1.5 3 0]61}45
TI1{1]1]1]1 112(3]4]5|6 6(6[6[6|6|6 6789|1011 05[1(2|0]|2]|15
constant rows columns additive multiplicative

> clusters may overlap in rows and columns

» patterns will never be this ideal, but noisy!

» many algorithms focus on the constant pattern type only, as there are O(2V?) possibilities.
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Density-based Subspace Clustering

Subspace clusters may be visible in one projection, but not in anot
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Density-based Subspace Clustering

Subspace clusters may be visible in one projection, but not in another:

Popular key idea:
» Find dense areas in 1-dimensional projections
» Combine subspaces as long as the cluster remains dense

Examples: CLIQUE [Agr+98], PROCLUS [Agg+99], SUBCLU [KKK04]
There also exist “correlation clustering”, for rotated subspaces.
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BIRCH Clustering [ZRL96]

Cluster Features and the CF-tree:

>

>

idea: summarize/compress the data into a tree structure

phase 1: build a tree, which for every node, stores a cluster feature CF = (n, L_S, SS):
number of points n; linear sum LS := ), &j; sum of squares SS := ) AR

points within a threshold criterion are added to an existing node, otherwise add a new node

when running out of memory, rebuild the tree with a larger threshold
insert all leaf cluster features (not the raw data) into a new tree

phase 2: build a more compact tree

phase 3: run a clustering algorithm on the aggregated cluster features
e.g., k-means, hierarchical clustering, CLARANS

phase 4: re-scan the data, and map all data points to the nearest cluster

extensions: data bubbles for DBSCAN [Bre+01],
two-step clustering for categorical data [Chi+01]
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BIRCH Clustering [ZRL96] /2

Cluster Features properties:
» CF additivity theorem: we can merge two cluster features CF; 4+ CF5:
CF; + CFy := (n1 + n2, LS; + LSs,SS1 + SS3)
> we can derive the following aggregates from a cluster feature CF:

» Centroid: ji = Z 2
> “Radius™ R = \/ (5 — i) = /185 — [l
. 2 iy m
» “Diameter™: D = \/Z” lzi — ;)" /(n(n — 1)) = \/(n -SS —|ILSI)/(5)
> we can compute several distances of two CF as:
» centroid Euclidean Dy(CFq, CFy) := |1 — ual|

» centroid Manhattan D (CF1,CFg) := >, |jt1,a — 2,4

11582412581 —2 3" LS, LS,
ning

&31 s

» average inter-cluster distance Dy(CFy,CF3) := \/
» average intra-cluster distance D3(CF,CFy) := ...
» variance increase distance D4(CFy,CFs) := ...

8Note that the “radius” is rather the average distance from the mean, and the “diameter” is the average
pairwise distance. Beware that this suffers from numerical instability with floating point math!
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CURE Clustering [GRS98]
Clustering Using REpresentatives (CURE):

> draw a random sample of s < n points

» split the sample s into p partitions of size % (default p = 1)
> cluster each partition into piq clusters (default ¢ = 3)

> cluster the resulting 2 representative points of all partitions

> label all n data points with the cluster of the nearest representative point

using a modified hierarchical clustering algorithm
> use a k-d-tree to accelerate neighbor search, and keep candidates in a priority queue
> always merge the closest two clusters

> for the merged cluster, find ¢ farthest points, but move them by « to the mean
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ROCK Clustering [GRS99]

RObust Clustering using linKs (ROCK) for categorical data:
» uses Jaccard a primary similarity: J(z,y) := |[x Ny|/|x Uy]
» alink is an object z # z,y with J(z,2) < § and J(z,y) < 0
let link(z,y) = [{z | J(x,2) < O A J(z,y) < 0}| be the number of links

try to maximize
link(z,y)
Ey = Z nyec IO

merge clusters with best “goodness”

v

v

v

ZmeCi Eyecj hnk(a:,y)

Q(Ch Cj) = (m+nj)1+2f<g)_n}+2f<0>_n1+2f<0>
i f]
» f(0) is application and data dependent.
Example in market basket analysis: f(f) = %
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CHAMELEON [KHK99]
CHAMELEON: Clustering Using Dynamic Modeling

1. generate a sparse graph, e.g., using the k-nearest neighbors only

2. try to minimize the edge cut EC, the weight of edges cut when partitioning the graph
3. partition the graph using hMETIS into “relatively small” sub-clusters
4

. merge sub-clusters back into clusters based on “relative interconnectivity” (EC of merging
the cluster, normalized by the average of a fictional partition of the two child clusters) and
“relative closeness” (the average length of a edge between the clusters, compared to the
weighted average length of an edge within the clusters)

°Not published, how this really works. This is proprietary for circuit design.
Implementations of Chameleon usually require installing the original hMETIS binary to do the partioning.
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Spectral Clustering [SM00; MS00; NJWO01]

Based on graph theory, use the spectrum (eigenvalues) of the similarity matrix for clustering.
» compute the similarity matrix S = (s;5) (with s;; > 0)
Popular similarities include s;; = 1 if 7, j are k nearest neighbors, or € neighbors
» compute the diagonal matrix D = (d;;) with d; := Zj 5ij

» compute a graph Laplacian matrix such as:
» non-normalized: L =D — S
» Shi-Malik normalized cut: Lepimaik = D~'L =1 — DS [SM00]
» random walk normalized: L,, = D~Y2LD~'/2 = — D=1/28D~1/2 [NJW01]

> compute smallest eigenvectors and eigenvalues
» each 0 eigenvalue indicates a connected component

> we can project onto the eigenvectors of the smallest eigenvalues:
well connected points will be close, disconnected points will be far

» finally, cluster in the projected space, e.g., using k-means
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Affinity Propagation Clustering [FD07]

Based on the idea of message passing: each object “communicates” to others which object they
would prefer to be a cluster representative, and how much responsibility they received.

>

>

>

compute a similarity matrix, e.g., s(z,y) = — ||z — y||°
set the diagonal to the median of s(z, y) (adjust to control the number of clusters)
iteratively send responsibility 7 (i, k) and availability a(i, k) messages:

r(i, k) < s(i, k) — I]n;??{a(i,j) +s(i,5)}

min{0, 7(k, k) + 3 qq py max(0,7(j, k))} i #k
Z]Q{k} maX(O,r(j, k)) i=k
objects i are assigned to object k which maximizes a(i, k) + r(i, k);
if i = k (and the value is positive), then they are cluster representatives and form a cluster

a(i, k) < {

the number of clusters is decided indirectly, by s(i, 7).

runtime complexity: O(n?), and needs 3 - n? memory to store (s;;), (7i;), (aij)-
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Further Clustering Approaches

We only briefly touched many subdomains, such as:

> biclustering
e.g., Cheng and Church, ...

> projected and subspace clustering

e.g., CLIQUE, PROCLUS, PreDeCon, SUBCLU, P3C, StatPC, ...

Some notable subtypes not covered at all in this class:

> correlation clustering
e.g., ORCLUS, LMCLUS, COPAC, 4C, ERIC, CASH, ...

> online and streaming algorithms
e.g., StreamKM++, CluStream, DenStream, D-Stream, ...

» graph clustering

> topic modeling
e.g., pLSI, LDA, ...
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Evaluation of Clustering

We can distinguish between four different kinds of evaluation:

» Unsupervised evaluation (usually based on distance / deviation)
Statistics such as SSQ), Silhouette, Davies-Bouldin, ...
Used as: heuristics for choosing model parameters such as k

> Supervised evaluation based on labels
Indexes such as Adjusted Rand Index, Normalized Mutual Information, Purity, ...
Used as: similarity with a reference solution

> Indirect evaluation
Based on the performance of some other (usually supervised) algorithm in a later stage
E.g., how much does classification improve, if we use the clustering as feature

» Expert evaluation
Manual evaluation by a domain expert
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Unsupervised Evaluation of Clusterings

Recall the basic idea of distance-based clustering algorithms:
> Items in the same cluster should be more similar

> Items in other clusters should be less similar

» compare the distance within the same cluster to distances to other clusters

Some simple approaches (IV points, d dimension):
. ._ 1 .
MeanDistance(C) := « Zci erci dist(z, pe;)

MeanSquaredDistance(C') := % ZC Z co dist(z, puc,)?
[ x 7

2
RMSSTD(C) := \/Mc—n D 2, o= il

How can we combine this with the distance to other clusters?
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R?: Coefficient of Determination
The “total sum of squares” (T'TS) of a data set X is:
TSS =" |z - X|* = SSE(X)

this can be decomposed into:

5=, (3, le=ClF + cl[X-c|)
=D, SSE(C) + Y |Gil [ X~ el

TSS = WCSS + BCSS

TSS Total Sum of Squares
WCSS  Within-Cluster Sum of Squares
BCSS Between-Cluster Sum of Squares

» Because total sum of squares T'SS is constant, minimizing WCSS = maximizing BCSS

Explained variance R? := BCSS/TSS = (TSS — WCSS) /TSS € [0, 1]
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Variance-Ratio-Criterion [CH74]

The Calinski-Harabasz Variance-Ratio-Criterion (VRC) is defined as:

VRO . BCSS/(k—1) _ N —k BCSS
"~ WCSS/(N — k) k—1 WCSS

Increasing k increases BCSS and decreases WCSS.
Here, both terms get a penalty for increasing k!

Connected to statistics: one-way analysis of variance (ANOVA) test (“F-test”).

Null hypothesis: all samples are drawn from distributions with the same mean.
A large F-value indicates that the difference in means is significant.

Beware: you must not use the same data to cluster and to do this test!
The proper test scenario is to, e.g., test if a categorical attribute exhibits a significant difference
in means of a numerical attribute (and which is only used in the test).
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Silhouette [Rou87]

Define the mean distance of x to its own cluster, and to the closest other cluster:
a(z € Cy) := meanyec; y£z A(T,Y)
b(x € C;) :=ming;+c, mean,ec; d(z,y)

The silhouette width of a point x (can be used for plotting) then is:

bo-a) 1o
s(@e )= {glax{au),b(x)} F1C] > 1

otherwise
The silhouette of a clustering C' then is:
Silhouette(C) :=mean, s(x)
Silhouette of a point: 1if a < b (well assigned point)
0if a = b (point is between the two clusters), and

-1if a > b (poorly assigned point).
An average Silhouette of > 0.25 is considered “weak”, > 0.5 is “reasonable”, > 0.7 is “strong”.
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Silhouette [Rou87] /2

Challenges with using the Silhouette criterion:

>

The complexity of Silhouette is: O(n?)
= does not scale to large data sets.

Simplified Silhouette:
use the distances to cluster centers instead of average distances, O(n - k)

When a cluster has a single point, a(z) is not defined.
Rousseeuw [Rou87] suggests to use s(z) = 0 then (see the definition of s(z))

Which distance should we use, e.g., with k-means — Euclidean, or squared Euclidean?

In high-dimensional data, a(x) — b(z) due to the curse of dimensionality. Then s(z) — 0
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Davies-Bouldin Index [DB79] Power mean (with power p) of
(llz = yll,)" = >i(z — ys)”

Let the scatter of a cluster C; be (recall L,-norms):

1/p
e 1 E _ P
SZ ’ ('CZ| zeC} ||:C MCin)

Let the separation of clusters be:

Mi; = ||pc, — Mchp
The similarity of two clusters then is defined as:

Si+S,;
Rij ==~

Clustering quality is the average maximum similarity:

For p = 2, S, is standard deviation,
M;; is the Euclidean distance!

DB(C) :=meanc, maxc,xc, Rij

A small Davies-Bouldin index is better, i.e., S; + S; < M;j, scatter < distance
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Other Internal Clustering Indexes

There have been many more indexes proposed over time:
» Dunn index: cluster distance / maximum cluster diameter [Dun73; Dun74]
» Gamma and Tau: P(within-cluster distance < between-cluster distance ) [BH75]
» C-Index: sum of within-cluster distances / same number of smallest distances [HL76]
> Xie-Beni index for fuzzy clustering [XB91]
» Gap statistic: compare to results on generated random data [TWHO01]
» I-Index: maximum between cluster centers / sum of distances to the cluster center [MB02]
» S_Dbw: separation and density based [HV01; HBV02]
» PBM Index: distance to cluster center / distance to total center [PBM04]
> DBCV: density based cluster validation [Mou+14]
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Examples: Mouse data

Revisiting k-means on the mouse data:

Sum of Squares

Erich Schubert
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Examples: Mouse data

Clustering  Evaluation

Revisiting k-means on the mouse data:
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Examples: Mouse data

Clustering  Evaluation

Revisiting k-means on the mouse data:

Variance Ratio Criteria
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Examples: Mouse data

Revisiting k-means on the mouse data:

Clustering  Evaluation

0.6
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0.2

Erich Schubert

Min +

' ' I
Mean > Max ¥ Best SSQ

Number of clusters k

Knowledge Discovery in Databases

3:122/153

Winter Semester 2017/18



Clustering  Evaluation 3:122/153

Examples: Mouse data

Revisiting k-means on the mouse data:

T
Max 7 Best SSQ I

Min -+ Mean >

Davies Bouldin Index

0.8 -

0.6

Number of clusters k
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Examples: Mouse data

Revisiting k-means on the mouse data:

Min +  Mean > Max K Best SSQ

C-Index
(e}
(93]
T

S
-
T

Number of clusters k
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Examples: Mouse data

Revisiting k-means on the mouse data:

PBM-Index

Erich Schubert
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Examples: Mouse data

Revisiting k-means on the mouse data:
1

09 -

Min + Mean ¢

0.8
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0.4
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Number of clusters k
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Examples: Mouse data

Revisiting k-means on the mouse data:
0.6

' I
Min + Max ¥ Best SSQ

0.5

0.4

Tau

0.3

0.2

Number of clusters k
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Sum of Squares

CeIndex

Clustering  Evaluation 3:122/153
.
Examples: Mouse data
Revisiting k-means on the mouse data:
35 06 v . 800
Min +  Mean % Max ¥ Min 4 Mean 3% Max ¥ BestSSQ ] Min+  Mean % Max ¥ Best$SQ £ Min +  Mean % Best $SQ
m :
G 5 g
04 ]
f] i i
E 3@ \ £ w0
a t \ = 200
ut » -
Number of clusters k Number of clusters k Number of clusters k Number of clusters k
0 Min +  Mean 3 Max o Best$SQ £ n‘;: L Min+  Mean % Max ¥ BestSSQ £ n; Min +  Mean % e Min + Max ¥ Best$SQ £
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Number of clusters k
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Clustering  Evaluation

Examples: Mouse data

Toy “mouse” data set:

+ 4 X
vxt X% x
+?’& +§$‘+ ;(Xéfg&*}x
b ﬁ% O‘éoo ® %
w}f‘t C‘)b‘b cgox%xggt
+ 0 0,0°°8 oo oK %
00 SRR s

e%[g Q;%Od?o%‘}’o
Sl b,
(%é@) @go%g Q;Jo
o 9 %
&o o F 8 Oso o
0%°g 98 o%
qu OO%SO

Revisiting k-means on the mouse data:
Least SSQ with k = 3:

3:122/153

Least SSQ with k = 5:

Erich Schubert

Knowledge Discovery in Databases
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Supervised Cluster Evaluation
External evaluation measures assume we know the “true” clustering.

In the following, every point has a cluster C'(x) and a true class K (z).

The “raw data” (e.g., vectors) will not be used by these measures.

In literature this is popular to compare the potential of algorithms.

Often, classification data is used, and it is assumed that good clusters = the classes.
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Supervised Cluster Evaluation

External evaluation measures assume we know the “true” clustering.

In the following, every point has a cluster C'(x) and a true class K (z).

The “raw data” (e.g., vectors) will not be used by these measures.

In literature this is popular to compare the potential of algorithms.

Often, classification data is used, and it is assumed that good clusters = the classes.

On real data this will often not be possible: no labels available.
There may be more than one meaningful clustering of the same data!

Sometimes, we can at least label some data, or treat some properties as potential labels,
then choose the clustering that has the best agreement on the labeled part of the data.
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Clustering  Evaluation

Supervised Cluster Evaluation /2
The matching problem:

» Clusters C' are usually enumerated 1,2,3, ...,k

> True classes K are usually labeled with meaningful classes
» Which C'is which class K7

» Clustering is not classification, we cannot evaluate it the same way

Erich Schubert Knowledge Discovery in Databases
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Supervised Cluster Evaluation /2

The matching problem:

v

Clusters C are usually enumerated 1,2,3, ...k

v

True classes K are usually labeled with meaningful classes
Which C'is which class K?
» Clustering is not classification, we cannot evaluate it the same way

v

v

What if there are more clusters than classes?

v

What if a cluster contains two classes?

v

What if a class contains two clusters?
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Supervised Cluster Evaluation /2

The matching problem:

>

>

>

Clusters C are usually enumerated 1,2,3, ...k
True classes K are usually labeled with meaningful classes

Which C'is which class K?
» Clustering is not classification, we cannot evaluate it the same way

What if there are more clusters than classes?
What if a cluster contains two classes?

What if a class contains two clusters?

To overcome this

>

>

Choose the best (C, K') matching with, e.g., the Hungarian algorithm (uncommon)

Compare every cluster C' to every class K
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Purity, Precision and Recall

A simple measure popular in text clustering (but not much in “other” clustering):

|CiNK;|
Gl

Purity(C, K) NZ |C;|Purity(Cy, K) = Z maxy; |C; N K|

Purity(C;, K) :=maxg;

= A cluster, which only contains elements of class K has purity 1
» similar to “precision” in classification and information retrieval

But: every document is its own cluster has purity 1, is this really optimal?

We could also define a “recall” equivalent:

Recall(C, K;) :=maxc, ‘Cu@ﬂ(l

Recall(C, K) Z |Kj|Recall(C, K;) Z maxc, |C; N K|

But this is even more misleading: if we put all objects into one cluster, we get recall 1!

3:125/153
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3:126/153

Pair-counting Evaluation

Many cluster evaluation measures are based on pair-counting.
If (and only if) i and j are in the same cluster, then (i, ) is a pair.

This gives us a binary, classification-like problem:

CO=C0)  pan
C(i) # C(j) no pair

which can be computed using

‘ K (i) = K(j): pair ‘ K(i) # K(j): no pair
true positive (a) false positive (b)
false negative (c) true negative (d)

0=, () =3, (9~
czzi(lgi\)_a d=})-a-b-c

Objects are a “pair” iff they are related (“should be together”)
» we are predicting which objects are related (pairs), and which are not

Erich Schubert Knowledge Discovery in Databases
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Pair-counting Cluster Evaluation Measures
‘ K (i) = K(j): pair ‘ K (i) # K(j): no pair
C(i)=C(j) pair true positive (a) false positive (b)
C(i) # C(j) no pair | false negative (c) true negative (d)

Recall = &

L,
Precision =375

a+tc
Rand index [Ran71] :a+%i§+d = (a+ d)/(g) = Accuracy
Fowlkes-Mallows [FM83] =v/Precision - Recall = a/ V(a+0b)-(a+c)
Jaccard = 4
2Precision-Recall __ 2a

F1-Measure ~ Precision+Recall — 2a+btc

o — (1+8?)-Precision-Recall

Fﬁ_Measur 32-Precision+Recall

. o Rand index— E[Rand index]
AdJuSted Rand Index [HA85] ~ optimal Rand index—E[Rand index]

[
_ (3)(atd)—((a+b)(a+c)+(c+d) (b+d))
()" —((a+b)(ate)+(c+d) (b+d))
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Mutual Information [Mei03; Mei05; Mei12]

Evaluation by Mutual Information:

P(CiNK)
)=2., 2, PGinK) o8 5y P

:Z Z ’Ciij‘logN‘CiﬂKj’
i~j N |Cil - [ K|

Using log ¢ = —log g
Entropy:
Cil

H(C)=->_ P(Ci)log P(C Z
Normalized Mutual Information (NMI):™
1(C, K) 1(C,K) + I(K,C)

NMUCE) =0y + H(®))2 ~ 1(0.0) 1 1K, K)

= 1(C,C)

I and H are the usual Shannon entropy.

“There exist > 5 variations of normalized mutual information [VEB10].
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Further Supervised Cluster Evaluation Measures

Some further evaluation measures:

> Adjustment for chance is general principle,

Index— E[Index]
optimal Index— E[Index]

For example Adjusted Rand Index [HA85] or Adjusted Mutual Information [VEB10]
B-Cubed evaluation [BB98]

Set matching purity [ZK01] and F1 [SKKO00]

Edit distance [PLO02]

Visual comparison of multiple clusterings [Ach+12]

Gini-based evaluation [Sch+15]

Adjusted Index =

v

v

v

v

v
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Supervised Evaluation of the Mouse Data Set

Revisiting k-means on the mouse data:
0.6

0.55

' ' T
Min + Max ¥ Best SSQ

Jaccard
S
w
o

Number of clusters k
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Supervised Evaluation of the Mouse Data Set

Revisiting k-means on the mouse data:
0.6

Min + fean > Max ¥ Best SSQ
0.5

0.4

5 0.3

0.2

Number of clusters k
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Supervised Evaluation of the Mouse Data Set

Revisiting k-means on the mouse data:
0.5

0.45 -
0.4
0.35
0.3
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0.2
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0.1
0.05

NMI Joint

Number of clusters k
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Supervised Evaluation of the Mouse Data Set

Revisiting k-means on the mouse data:
09 T o 09 T

08 T
0.7 T
0.6 T
0.5 T
0.4 T
03 T

02 T

0.1 + + + + + + + + + 1 0.1 + + + + + + + + + i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Supervised Evaluation of the Mouse Data Set

Revisiting k-means on the mouse data:

0.6 T 05 :
0ss |- Min +  Mean 3 Max K Best $SQ £ s | Min + Meﬂ}( Al X BestssQ |
05 04 X 1

0.45 035

g 04T ERE
% 035 E 025 |- B
03 Z 02 =
025 015 F B
02 01 B
0.05 | B

Number of clusters k

Number of clusters k Number of clusters k

On this toy data set, most unsupervised
methods prefer k = 3.

NMI prefers the right solution with £ = 6.
SSQ prefers the left (worse?) solution.
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Spatial Index Structures

Key idea of spatial search:

> aggregate the data into spatial partitions

v

identify partitions that are relevant for our search

v

search within relevant partitions only

v

do this recursively

Requirements for efficient search:
> the search result is only a small subset
> we have a compact summary of the partition

> filtering rules can prune non-relevant partitions

v

partitions do not overlap too much

v

partitions do not vary in the number of objects too much
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Spatial Index Structures /2

Observations

>

v

index structures already realize some (very rough) “clustering”

similar objects are usually nearby in the index

can usually be constructed fairly fast (with bulk-loading techniques etc.)

can be re-used and shared for multiple applications

can store complex objects such as polygons, often using bounding rectangles
objects and partitions overlap

no universal index — needs to be carefully set up (distances, queries, ...)

if they work, speedups are often substantial
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):

Instead of computing the distances to each point,
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):

MBR

Instead of computing the distances to each point,
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):

MBR

MinDist(q, MBR)

Instead of computing the distances to each point, compute the minimum distance to the MBR.
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):

MBR

MinDist(q, MBR)

Instead of computing the distances to each point, compute the minimum distance to the MBR.

If MinDist(q, MBR) > ¢, then no point in the MBR can be closer than .
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):

MBR

(B > o

MinDist(q, MBR)

Instead of computing the distances to each point, compute the minimum distance to the MBR.
If MinDist(q, MBR) > ¢, then no point in the MBR can be closer than .
If MinDist(q, MBR) < ¢, we need to process the contents of the MBR.
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Spatial Data Search: e-Range Queries

Example: summarize partitions using Minimum Bounding Rectangles (MBR):

MBR

MinDist(q, MBR)

Instead of computing the distances to each point, compute the minimum distance to the MBR.
If MinDist(q, MBR) > ¢, then no point in the MBR can be closer than .
If MinDist(q, MBR) < ¢, we need to process the contents of the MBR.
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Spatial Data Search: k-Nearest Neighbors

Example: ball cover:

Bounding sphere: for all child points ¢;; of p;, we have dist(p;, ¢ij) < r;.

By the triangle inequality, we have dist(q, ¢;j) + dist(c;;, p;) > dist(g, p;).
by using r;, we get the bound dist(q, ¢;;) > dist(q, p;) — dist(c;j,ps) > dist(q, pi) — i

Put nodes p; into a priority queue, ordered by MinDist(q, p;) := dist(q, p;) — 7.
If we have k results that are better than the remaining queue entries, we can stop.

Balls will usually contain nested balls in a tree structure.
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Spatial Data Search: k-Nearest Neighbors

Example: ball cover:

Bounding sphere: for all child points ¢;; of p;, we have dist(p;, ¢ij) < r;.

By the triangle inequality, we have dist(q, ¢;j) + dist(c;;, p;) > dist(g, p;).
by using r;, we get the bound dist(q, ¢;;) > dist(q, p;) — dist(c;j,ps) > dist(q, pi) — i

Put nodes p; into a priority queue, ordered by MinDist(q, p;) := dist(q, p;) — 7.
If we have k results that are better than the remaining queue entries, we can stop.

Balls will usually contain nested balls in a tree structure.
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Spatial Data Search: k-Nearest Neighbors

Example: ball cover:

Bounding sphere: for all child points ¢;; of p;, we have dist(p;, ¢ij) < r;.

By the triangle inequality, we have dist(q, ¢;j) + dist(c;;, p;) > dist(g, p;).
by using r;, we get the bound dist(q, ¢;;) > dist(q, p;) — dist(c;j,ps) > dist(q, pi) — i

Put nodes p; into a priority queue, ordered by MinDist(q, p;) := dist(q, p;) — 7.
If we have k results that are better than the remaining queue entries, we can stop.

Balls will usually contain nested balls in a tree structure.
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Spatial Data Search: k-Nearest Neighbors

Example: ball cover:

MinDist(q, p;)

Bounding sphere: for all child points ¢;; of p;, we have dist(p;, ¢ij) < r;.

By the triangle inequality, we have dist(q, ¢;j) + dist(c;;, p;) > dist(g, p;).
by using r;, we get the bound dist(q, ¢;;) > dist(q, p;) — dist(c;j,ps) > dist(q, pi) — i

Put nodes p; into a priority queue, ordered by MinDist(q, p;) := dist(q, p;) — 7.
If we have k results that are better than the remaining queue entries, we can stop.

Balls will usually contain nested balls in a tree structure.
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Spatial Index Structures

Many different strategies for partitioning data exist:

> grid Quadtree [FB74], Gridfile [NHS84], ...

> binary splits k-d-tree [Ben75], ...

» minimal bounding boxes R-tree [Gut84], RT-tree [SRF87], R*-tree [Bec+90], ...

> ball covers Ball-tree [Omo89], M-tree [CPZ97], iDistance[Yu+01],
Cover-tree [BKL06], ...

» ball and outside VP-tree [UhI91; Yia93], ...

>

Most use either rectangles (coordinate ranges), or balls (triangle inequality).

Simpler partition description = less data to read / process / update / ....

Erich Schubert Knowledge Discovery in Databases Winter Semester 2017/18



Clustering ~ Database Acceleration 3:136/153

R-trees [Gut84]

Objective: efficient management and querying of spatial objects (points, lines, polygons, ...)
Common index queries:

> point query: all objects that contain a given point

> region query: all objects that are fully contained in (overlap with) a given query rectangle
> range query: all object within a certain radius

> kNN query: find the k nearest neighbors
Approach
> management, storage, and search of axis-parallel rectangles

> objects are represented by their minimum bounding rectangles in RY

» search queries operate on minimum bounding rectangles
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R-trees [Gut84] /2

R-tree: generalization of BT -tree to multiple dimensions (balanced tree, page fill ...

>

>

stores d-dimensional minimum bounding rectangles (MBR)
objects (e.g., polygons) are represented by their MBR

objects stored in leaf nodes only
objects and nodes are not disjoint, but may overlap
inner nodes store the MBRs of their child nodes

the root node is the MBR of the entire data set

RT-tree [SRF87]

>

» requires “splitting” and “clipping” of spatial objects; leads to some redundancy

>

no overlap allowed

guarantees unique path from root to leaf node

R*-tree [Bec+90]

» improved split heuristic for pages, aimed at minimization of both coverage and overlap

Erich Schubert Knowledge Discovery in Databases
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R-trees [Gut84] /3

Example: R-tree for the mouse data set, bulk-loaded:
Leaves + inner nodes

3:138/153

+ root node
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R-trees [Gut84] /4

Further examples:

Gaussians in 3D:

Clustering

Erich Schubert

Database Acceleration

3:139/153

10.000 Wikidata coordinates for Germany:
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Speedups Using Index-based Queries [KSZ16]

Index-accelerated DBSCAN implementations are substantially faster:

104 |
ELKI linear —— ELKI R* —%~
3 WEKA linear —+— JSATR =%
10° WEKA dev linear ELKI STR —¥~
= R fpc linear —+
g R dbscan linear —#« ELKI k-d £+
> sklearn linear R dbscan k-d 4
£102 |- Octave linear sklearn k-d
= Smile linear —+— Smile k-d E+
~ JSAT linear —+— JSAT k-d B+
HubMiner linear —+—
0! Commons linear ELKI iDistance -
ELKI Cover —5- sklearn Ball
Smile Cover =©—
]00 1 | | | | | | |

2008 2009 2010 2011 2012 2013 2014 2015 2016
Release date

Best non-indexed: > 100 seconds. Best indexed: < 5 seconds.
(But implementation details matter, too. Good code will easily be 10x faster than bad code.)
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Index-based Sampling
Approach

> construct R-tree from the data to be clustered
> select one or more representatives from the data pages (leaf nodes) of the R-tree

> apply clustering only to these representatives
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