
Good and Bad Neighborhood Approximations
for Outlier Detection Ensembles

Author manuscript – the final publication is available at Springer via
https://doi.org/10.1007/978-3-319-68474-1_12

Evelyn Kirner1, Erich Schubert2, and Arthur Zimek3

1 Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

evelyn.kirner@campus.lmu.de
2 Heidelberg University

schubert@informatik.uni-heidelberg.de
3 University of Southern Denmark

Campusvej 55, 5230 Odense M, Denmark
zimek@imada.sdu.dk

Abstract. Outlier detection methods have used approximate neighbor-
hoods in filter-refinement approaches. Outlier detection ensembles have
used artificially obfuscated neighborhoods to achieve diverse ensemble
members. Here we argue that outlier detection models could be based
on approximate neighborhoods in the first place, thus gaining in both
efficiency and effectiveness. It depends, however, on the type of approx-
imation, as only some seem beneficial for the task of outlier detection,
while no (large) benefit can be seen for others. In particular, we argue
that space-filling curves are beneficial approximations, as they have a
stronger tendency to underestimate the density in sparse regions than in
dense regions. In comparison, LSH and NN-Descent do not have such a
tendency and do not seem to be beneficial for the construction of outlier
detection ensembles.

1 Introduction

Any algorithm will have different points of optimization. More often than not, it
is not the algorithm that needs to be optimized, but the actual implementation.
Implementation details can yield substantial performance differences, in particu-
lar when scripting languages such as R and Python or just-in-time optimization
such as in Java and Scala are used [29]. An implementation detail often not
even mentioned in passing in publications describing a novel outlier detection
algorithm is the computation of neighborhoods. Typical outlier detection algo-
rithms compute some property for characterizing outlying behavior based on the
nearest neighbors of some object and compare that property for a given object
with the corresponding properties of some context of neighboring objects [42].
Because of its complexity, a central bottleneck for all these algorithms is usually
the computation of object neighborhoods.

Table 1: Runtime breakdown of LOF (with k = 100) in ELKI 0.6.0
Data set DBpedia 475.000 instances, 2 dimensions

Index linear scan k-d tree R*-tree Theoretical
(ms) (%) (ms) (%) (ms) (%) complexity

Load Ascii data 990 0.04 1057 4.82 1035 5.99 O(n)
Bulk-load index 0 0.00 829 3.78 768 4.44 O(n logn)
kNN search 2672128 99.74 15740 71.72 11379 65.85 O(n2), maybe n logn
LOF 5879 0.22 4319 19.68 4099 23.72 O(nk)

Data set ALOI 75.000 instances, 27 dimensions

Index linear scan k-d tree R*-tree Theoretical
(ms) (%) (ms) (%) (ms) (%) complexity

Load Ascii data 2238 0.96 2232 0.50 2231 1.27 O(n)
Bulk-load index 0 0.00 624 0.14 996 0.56 O(n logn)
kNN search 230030 98.84 446653 99.28 172791 97.99 O(n2), maybe n logn
LOF 468 0.20 372 0.08 321 0.18 O(nk)

We demonstrate this in a motivating experiment, using the ELKI frame-
work [2] since it offers many algorithms as well as several index structures for
acceleration. In Table 1 we give runtime benchmark results running the LOF [10]
algorithm (local outlier factor) on two larger data sets: the first data set con-
tains all GPS coordinates from DBpedia [31], the second 27 dimensional color
histograms for the Amsterdam Library of Object Images (ALOI, [17]). We ex-
pect the first to be more amiable to index acceleration using spatial indexes
such as the k-d tree [9] and the R*-tree [19, 8]. For each data set, we report
the runtime broken down into (i) loading the data from text files into memory,
(ii) bulk-loading the index, (iii) searching the kNN of each object, and (iv) com-
puting the LOF scores. We repeat the experiments using a linear scan, using a
k-d tree, and using a bulk-loaded R*-tree; we also give theoretical results on the
complexity of each step.

Both from a theoretical point of view as well as supported by the empirical
results presented here, step (iii), computing the kNN of each object, is the main
contributor to total runtime. However, it also becomes evident that the constant
factors in the runtime analysis should probably not be as easily dismissed (see
also the more extensive discussion by Kriegel et al. [29]). Bulk-loading the index
is usually in O(log n), while for kNN search with indexes an optimistic empirical
estimate is n log n, and the theoretical worst case supposedly is between O(n4/3)
and O(n2).4 Effectively these values differ by two to three orders of magnitude,
as constant factors with sorting are tiny. With a linear scan, finding the nearest
neighbors is in Θ(n2). Many implementations will also require Θ(n2) memory
because of computing a full distance matrix.

4 Results from computational geometry indicate that the worst case of nearest neigh-
bor search in more than 3 dimensions cannot be better than O(n4/3) [16]. Empirical
results with such indexes are usually much better, and tree-based indexes are often
attributed a n logn cost for searching.

In particular on large data sets, finding the kNN is a fairly expensive opera-
tion, and traditional indexes such as the k-d tree and the R*-tree only work for
low dimensionality (for our 27 dimensional example data set, the k-d tree has
become twice as slow as the linear scan, and the R*-tree only yields small per-
formance benefits, as opposed to 2 dimensions, where the speed-up was over 200
fold). Furthermore, neither the k-d tree nor the R*-tree are easy to parallelize
in a cluster environment. Therefore, the use of approximate indexes is desirable
to reduce runtime complexity.

While there are several attempts to optimize the neighborhood computation
for outlier detection algorithms [23, 7, 27, 36, 3, 37, 46, 14, 43], these aim at com-
puting the exact outlier score as fast as possible or at approximating the exact
outlier score as closely as possible using approximate neighborhoods that are
as close to the exact neighborhoods as possible. Note, however, that any out-
lier score is itself only an approximation of some imprecise statistical property
and the “exact” outlier score is therefore an idealization that has probably no
counterpart in reality.

Here, we argue that using approximate neighborhoods as such can be benefi-
cial for outlier detection if the approximation has some bias that favors the isola-
tion of outliers, especially in the context of ensemble techniques, that need some
diversity among ensemble components anyway [48]. Using approximate neigh-
borhoods as diverse components for outlier ensembles has not been discussed in
the literature so far but it seems to be an obvious option. We show, however,
that using the approximate neighborhoods can be beneficial or detrimental for
the outlier detection ensemble, depending on the type of approximation. There
are apparently good and bad kinds of neighborhood approximations for the task
of outlier detection (and presumably also for clustering and for other data min-
ing tasks). We take this point here based on preliminary results and suggest to
investigate the bias of different neighborhood approximations methods further.

This paper is organized as follows: we review related work in Section 2,
describe our approach in Section 3, and present our experimental results in
Section 4. We conclude in Section 5.

2 Related Work

Existing outlier detection methods differ in the way they model and find the out-
liers and, thus, in the assumptions they, implicitly or explicitly, rely on. The fun-
damentals for modern, database-oriented outlier detection methods (i.e., meth-
ods that are motivated by the need of being scalable to large data sets, where
the exact meaning of “large” has changed over the years) have been laid in the
statistics literature. In general, statistical methods for outlier detection (also:
outlier identification or rejection) are based on assumptions on the nature of
the distributions of objects. The classical textbook of Barnett and Lewis [6]
discusses numerous tests for different distributions. The tests are optimized for
each distribution dependent on the specific parameters of the corresponding dis-
tribution, the number of expected outliers, and the space where to expect an

outlier. Different statistical techniques have been discussed by Rousseeuw and
Hubert [40].

A broader overview for modern data mining applications has been presented
by Chandola et al. [12]. Here, we focus on techniques based on computing dis-
tances (and derived secondary characteristics) in Euclidean data spaces.

With the first database-oriented approach, Knorr and Ng [26] triggered the
data mining community to develop many different methods, typically with a
focus on scalability. A method in the same spirit [39] uses the distances to the
k nearest neighbors (kNN) of each object to rank the objects. A partition-based
algorithm is then used to efficiently mine top-n outliers. As a variant, the sum of
distances to all points within the set of k nearest neighbors (called the “weight”)
has been used as an outlier degree [4].

Aside from this basic outlier model, they proposed an efficient approximation
algorithm, HilOut, based on multiple Hilbert-curves. It is a strongly database
oriented technique capable of an efficient on-disk operation. It processes the
data set in multiple scans over the data, maintaining an outlier candidate list
and thresholds. For every point, its outlier score is approximated with an upper
and lower point. Objects whose upper bound becomes less than the global lower
bound can be excluded from the candidates. If after a certain number of scans
the candidate set has not yet reached the desired size, a final refinement step will
compute the pairwise distances from the candidates to the full data set. Hilbert-
curves serve a twofold purpose in this method. First, they are used to find good
neighbor candidates by comparing each object with its closest neighbors along
the Hilbert-curve only. Second, the Hilbert-curves are used to compute lower
bounds for the outlierness, as at least for a small radius they can guarantee
that there are no missed neighbors. For subsequent scans, the Hilbert-curves are
varied by shifting the data set with a multiple of 1

d+1 on each axis to both create
new neighbor candidates and to increase the chance of having a good guarantee
on the close neighbor completeness.

The so-called “density-based” approaches consider ratios between the local
density around an object and the local density around its neighboring objects,
starting with the seminal LOF [10] algorithm. Many variants adapted the original
LOF idea in different aspects [42]. Despite those many variants, the original LOF
method is still competitive and state of the art [11].

As for other approaches, also for several of the variants of LOF, approximate
variants have been proposed. For example the LOCI method [38] came already
in the original paper with an approximate version, aLOCI. For aLOCI, the data
are preprocessed and organized in (multidimensional) quadtrees. These have the
benefit of allowing a simple density estimation based on depth and occupancy
numbers alone, i.e., when an object is contained in an area of volume V which
contains n objects, the density is estimated to be n

V . Since this estimation can be
quite inaccurate when an object is close to the fringe of V , aLOCI will generate
multiple shifted copies of the data set, and always use the quadtree area where
the object is located most closely to the center. Furthermore, as aLOCI consid-
ers multiple neighborhood sizes, the algorithm will check multiple such boxes,

which may come from different trees. This makes the parallelization of aLOCI
hard, while the required random accesses to the quadtree make this primarily
an algorithm for data that fits into main memory. Shifting is done by moving
the data set along a random vector in each dimension, cyclically wrapping the
data within the domain (which may, in turn, cause some unexpected results).

Several approximate approaches use random projection techniques [33, 1, 45]
based on the Johnson-Lindenstrauss lemma [24], especially in the context of
high dimensional outlier detection [51]. Wang et al. [46] propose outlier detec-
tion based on Locality Sensitive Hashing (LSH) [22, 18, 13]. The key idea of this
method is to use LSH to identify low-density regions, and refine the objects in
these regions first, as they are more likely to be in the top-n global outliers.
For local outlier detection methods there may be interesting outliers within a
globally dense region, though. As a consequence, the pruning rules this method
relies upon will not be applicable. Zhang et al. [47] combine LSH with isolation
forests [32]. Projection-indexed nearest-neighbours (PINN) [14] shares the idea
of using a random projection to reduce dimensionality. On the reduced dimen-
sionality, an exact spatial index is then employed to find neighbor candidates
that are refined to k nearest neighbors in the original data space.

Improving efficiency of outlier detection often has been implemented by fo-
cussing on the top-n outliers only and pruning objects before refinement that do
not have a chance to be among the top-n outliers [23, 7, 27, 36, 3]. A broad and
general analysis of efficiency techniques for outlier detection algorithms [37] iden-
tifies common principles or building blocks for efficient variants of the so-called
“distance-based” models [26, 39, 4]. The most fundamental of these principles is
“approximate nearest neighbor search” (ANNS). The use of this technique in
the efficient variants studied by Orair et al. [37] is, however, different from the
approach we are proposing here in a crucial point. Commonly, ANNS has been
used as a filter step to discard objects from computing the exact outlier score.
The exact kNN distance could only become smaller, not larger, in case some
neighbor was missed by the approximation. Hence, if the upper bound of the
kNN distance, coming along with the ANNS, is already too small to possibly
qualify the considered point as a top-n outlier, the respective point will not be re-
fined. For objects passing this filter step, the exact neighborhood is still required
in order to compute the exact outlier score. All other efficiency techniques, as
discussed by Orair et al. [37], are similarly based on this consideration and es-
sentially differ in the exact pruning or ranking strategies. As opposed to using
approximate nearest neighborhoods as a filter step, we advocate to directly use
the resulting set of an approximate nearest neighbor search to compute outlier
scores, without any refinement. Schubert et al. [43] based a single outlier model
on combinations of several approximate neighborhoods, studying space-filling
curves and random projections. Here, we compute the outlier score on each of
the k approximate nearest neighbors directly, without any refinement, instead of
on the exact neighborhood and combine them only afterwards. In addition, we
compare different approximate neighborhood search methods: aside from space
filling curves we also study LSH (see above) and NN-Descent [15]. The basic

idea of NN-Descent is an iterative refinement of neighborhoods, checking the
approximate neighbors of the approximate neighbors (using both forward and
reverse neighborhoods). Starting from random neighborhoods, the iteration ap-
proximates surprisingly quickly and well the true neighborhoods.

Many more approaches for the computation of approximate neighborhoods
could be tested and compared on their suitability for outlier detection (as well
as for other data mining tasks). However, most of them focus on a near-perfect
recall, and therefore may be unsuitable for our purposes. K-d-trees can be
parameterized to give approximation guarantees even when not exploring all
branches [5]. For example, randomized k-d-trees [44] build multiple k-d-trees
(randomly choosing the split axis amongst the best candidates) and search them
in parallel with an approximate search, while the priority search k-means tree [35]
uses recursive clustering.

Isolation forests [32] can be seen as an approximate density estimation en-
semble, which constructs multiple trees on different samples of the data, where
the height of a leaf (which determines “isolation”) is implicity used as a kind of
density estimate. As it does not find neighbors, but directly estimates density,
it cannot be used with methods such as LOF. ALOCI [38] uses a quadtree for a
similar purpose. Nevertheless, the idea of building an ensemble of simple outlier
detectors is a common idea with our approach, and our observations may yield
further insight into this method, too.

Our work here is thus to be seen as a first step towards embracing imprecision
of approximate nearest-neighbor search as a source of diversity for ensemble
construction.

3 Outlier Detection Ensembles Based on Approximate
Neighborhoods

The conclusion we draw from the discussion of related work is to emphasize
that, for certain outlier detection models, it does not seem to be of the utmost
importance to work on exact neighborhoods. Although the use of approximate
neighborhoods for outlier detection was usually an intermediate step, before ul-
timately neighborhoods are refined to be exact or at least as good as possible,
we maintain that approximate neighborhoods can be sufficient or even beneficial
(if the approximations exhibit a bias that favors the isolation of outliers), to
estimate and compare local densities, in particular if we combine outlier models
learned on approximate data to an ensemble. The same reasoning relates to sev-
eral existing ensemble methods for outlier detection [48], where a better overall
judgment is yielded by diversified models. Models are diversified using approxi-
mations of different kinds: the results for outlier detection ensembles have been
improved by computing neighbors in subsets of features [30], in subsets of the
dataset [50], or even by adding noise components to the data points in order
to yield diverse density-estimates [49]. All these variants can in some sense also
be seen as using approximate neighborhoods directly for density estimates (in
subspaces, on subsets, or on noisy data), and for some of these approximations

(a) Depth 1 (b) Depth 2 (c) Depth 3 (d) Depth 4 (e) Depth 5 (f) Depth 6

Fig. 1: Hilbert curve approximations at different recursion depth.

Fig. 2: Approximation error caused by a space filling curve (illustration): black
lines indicate neighborhoods not preserved by the space filling curve. Shaded
areas are discovered clusters, red lines are approximate 2NN distances, green
lines are the real 2NN distances. By the loss of true neighbors, the density
estimated based on approximate neighbors will have a stronger tendency to be
underestimated for outliers than for cluster points, where the distances do not
grow that much by missing some true neighbors.

it has been argued why the particular approximation technique could even prove
beneficial for increasing the gap between outlier and inlier scores [50].

Among neighborhood approximation methods, space-filling curves have a
particular property w.r.t. outliers that seems to act beneficial. A space-filling
curve is recursively cutting the space as visualized in Figure 1. Neighbors be-
ing close in the full space but being separated by such a cut will not be well
preserved. In Figure 2, we showcase why this is of minimal effect on density
estimates within a cluster, while the density around outliers is more likely to
be underestimated more strongly: losing some neighbor in a low-density area
(as around outliers) will incur the identification of approximate neighbors that
exhibit larger distances (and thus much smaller local density estimates for the
outlier) as compared to losing some neighbor in some high-density area (such as a
cluster), where the approximate neighbors will still be rather close. Space-filling
curves do exhibit a bias that is actually helpful for outlier detection.

Neither LSH nor NN-Descent have a similar bias favoring relative underesti-
mation of density around outliers. By using reverse neighborhoods together with
forward neighborhoods, NN-Descent is naturally adaptive to different local den-
sities. Kabán [25] pointed out that random projection methods according to the
Johnson-Lindenstrauss lemma preserve distances approximately and thus also

preserve the distance concentration. Accordingly, LSH, being based on random-
projections, tends to preserve distances without bias on higher or lower densities.

In an outlier ensemble setting, we propose to use some basic outlier detector
that takes local neighborhoods as input (context set) to compute some local
model and that compares this model with the model of the neighbors as refer-
ence set. Context set and reference set are not necessarily identical, but typically
they are. See the discussion by Schubert et al. [42] on the general design of local
outlier detection methods. As we have seen in the overview on related work, typ-
ically exact neighborhoods are used. However, in ensemble approaches [48] often
special techniques are applied to diversify the models, e.g. by using neighbor-
hood computations in subspaces [30], in subsets of the data [50], or after adding
a noise component on the data [49].

Here we propose to not artificially diversify exactly computed neighborhoods
but rather to stick to approximate neighborhoods in the first place, which comes
obviously with a considerable computational benefit in terms of efficiency. We
demonstrate that this approach can also come with a considerable benefit in
terms of effectiveness, although this depends on the approximation method cho-
sen. We conjecture that also different outlier detection methods used as ensemble
components might react differently to the use of appoximations. In this study,
however, we focus on the sketched approximation techniques (space-filling curves,
LSH, and NN-Descent) in building outlier ensembles, using LOF [10] as basic
outlier detection technique. Outlier scores computed on various approximations
are then combined with standard procedures [48], using score normalization [28]
and ranking of average scores.

4 Experiments

For experiments, we use LOF as well as the neighborhood approximation meth-
ods in the implementation available in the ELKI framework [41].

As data set, we use a 27 dimensional color histogram representation of the
Amsterdam Library of Object Images (ALOI) [17], as used before in the outlier
detection literature (cf. the collection of benchmark data by Campos et al. [11]
and previous usage documented therein). We also take orientation on the results
reported by Campos et al. [11] for parameter selection (neighborhood size for
LOF), where values larger than 20 do not seem to be beneficial on this data set.
We thus test k = 1, . . . , 20.

As space filling curves we use the Z-order [34] and a window size equal to
the number of requested neighbors as used by Schubert et al. [43]. We chose the
simplest curve because it produces more diversity, and the Hilbert curve [20] is
substantially more expensive to compute, although recently some progress has
been made on sorting data without transforming it to Hilbert indices [21]. For
LSH we use 3 projections based on p-stable distributions [13], 3 hash tables and
a projection width of 0.1. For NN-Descent, we restrict the number of iterations
to 2 in order to force some diversity in the results. All of these parameters
are deliberately chosen to provide a fast, and not overly precise result. Too

precise results will obviously be detrimental to building an ensemble afterwards,
as ensembles rely on diversity in the ensemble members.

We measure the recall of the delivered neighborhoods (not counting the query
point itself) as well as the performance of the outlier detection methods (LOF
with exact neighborhoods and ensemble of LOF on approximate neighborhoods)
in terms of the area under the ROC curve (ROC AUC).

In Figure 3, we depict the recall of the three approximation methods as dis-
tribution over 25 runs, varying the size k of the requested neighborhood. For
NN-Descent we see a strong tendency to achieve better recall for larger neigh-
borhoods (due to the larger neighbors-of-a-neighbor candidate set). Z-order only
shows a slight tendency in the same direction, LSH has the opposite tendency,
however not very strongly (because of the increasing distance to the k nearest
neighbor, these are less likely to be in the same hash bucket). More remarkable is
the difference in the variance of achieved recall: Z-order always has a considerable
variance, the variance in LSH seems also to depend on the neighborhood size,
while NN-Descent has very stable recall over the different runs. If we allowed
NN-Descent to perform more iterations, its recall would further improve, but
the variance would become even smaller. Note that for the purpose of ensemble
method, variance is related to diversity, and therefore desirable.

If we were to compare the approximation methods as such, we would easily
notice that LSH achieves very high recall compared to the others, and therefore
may be considered to be the best choice. However, as we want to use approximate
neighborhoods as input for ensemble members, a low recall might already be
sufficient to get good results [43] and the variance is of greater importance.

In Figure 4 we depict the performance of the resulting ensembles, based on
each of the approximation methods and each k. We plot the score distribution
of the individual ensemble members using a boxplot, and the performance of the
ensemble resulting from the combination. In order to visualize the relationship
to recall of the true nearest neighbors, we use the mean recall of the ensemble
on the x axis. For comparison, at recall 1, we also plot the results obtained with
exact nearest neighbors (multiple points due to multiple choices of k).

For all of the methods, we can observe that the ensemble performs at least
as good as 75% of the ensemble members, indicated by the upper quartile of
the boxplot. As expected, we see that the combination of LOF based on LSH
(high recall) and NN-Descent (low recall), both not exhibiting a beneficial bias
for outlier detection, does not improve over the single LOF result based on
exact neighborhoods,5 while the combination of LOF based on space-filling curve
approximations (intermediate recall, large variance, beneficial bias) improves also
over the exact LOF and shows the best results overall, similar to the observation
by Schubert et al. [43].

5 But there may be a performance improvement by nevertheless using these methods.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

R
ec

al
l

k

(a) Z-order

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

R
ec

al
l

k

(b) LSH

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 15 20

R
ec

al
l

k

(c) NN-Descent

Fig. 3: Recall of the true k nearest neighbors for approximate neighborhood
search (distribution over 25 runs), depending on the neighborhood size k. (The
query point is not counted as hit in the result.)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(1.0) 0.33 0.34 0.35 0.36 0.37

L
O

F
 O

ut
li

er
 R

O
C

 A
U

C

Mean Recall

Ensemble members Exact LOF Ensemble

(a) Z-order

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.9 0.92 0.94 0.96 0.98 1

L
O

F
 O

ut
li

er
 R

O
C

 A
U

C

Mean Recall

Ensemble members Exact LOF Ensemble

(b) LSH

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(1.0) 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
O

F
 O

ut
li

er
 R

O
C

 A
U

C

Mean Recall

Ensemble members Exact LOF Ensemble

(c) NN-Descent

Fig. 4: ROC AUC of ensemble members (LOF on approximations), ensemble,
and exact LOF for different k = 1 . . . 20 (not labeled). Boxplots indicate the
ensemble members, the stars indicate the performance of the complete ensemble,
diamonds indicate the performance of exact nearest neighbors for comparison.

5 Conclusion

We studied outlier detection ensembles based on approximate neighborhoods,
using LOF as outlier detector and space-filling curves (Z-order), LSH, and NN-
Descent as approximate methods of nearest neighbor search. Our results demon-
strate that higher recall in the neighborhood search is not necessarily better
for building ensembles, as for building ensembles, the variance over the ensem-
ble members is an important ingredient. And indeed, in theory, a method with
0% recall in the true k-nearest-neighbors can nevertheless achieve 100% accuracy
in finding the true outliers. The neighborhood approximation with intermediate
recall, Z-order, delivers the best results for the outlier ensemble, beating exact
methods. NN-Descent (with only 2 iterations to have more diversity) reaches
from very poor recall to a slightly better recall, compared to Z-order. The recall
here is clearly depending on the size of the requested neighborhood (as expected
from the nature of the approximation method). But the variance is surprisingly
small and does not give sufficient variety to improve in an ensemble. LSH, on
the other hand, shows a very strong performance in terms of recall. The per-
formance of the outlier ensemble is in the upper half of the distribution of the
individual outlier detectors based on individual approximations, but does not
reach the performance of the exact method. For the purpose of using this for
outlier detection ensembles, a key challenge is to construct approximation that
are both good enough, and diverse enough.

We offer as an additional explanation that space-filling curves exhibit a bias
that is particularly helpful to distinguish low-density areas (i.e., outliers) from
high-density areas (i.e., clusters). We therefore suggest to study more thoroughly
the bias of different neighborhood approximation methods with respect to dif-
ferent application tasks.

References

1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. JCSS 66, 671–687 (2003)

2. Achtert, E., Kriegel, H.P., Schubert, E., Zimek, A.: Interactive data mining with
3D-Parallel-Coordinate-Trees. In: Proc. SIGMOD. pp. 1009–1012 (2013)

3. Angiulli, F., Fassetti, F.: DOLPHIN: an efficient algorithm for mining distance-
based outliers in very large datasets. ACM TKDD 3(1), 4:1–57 (2009)

4. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE
TKDE 17(2), 203–215 (2005)

5. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions.
In: Proc. SODA. pp. 271–280 (1993)

6. Barnett, V., Lewis, T.: Outliers in Statistical Data. John Wiley&Sons, 3rd edn.
(1994)

7. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In: Proc. KDD. pp. 29–38 (2003)

8. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient
and robust access method for points and rectangles. In: Proc. SIGMOD. pp. 322–
331 (1990)

9. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

10. Breunig, M.M., Kriegel, H.P., Ng, R., Sander, J.: LOF: Identifying density-based
local outliers. In: Proc. SIGMOD. pp. 93–104 (2000)

11. Campos, G.O., Zimek, A., Sander, J., Campello, R.J.G.B., Micenková, B., Schu-
bert, E., Assent, I., Houle, M.E.: On the evaluation of unsupervised outlier de-
tection: Measures, datasets, and an empirical study. Data Min. Knowl. Disc. 30,
891–927 (2016)

12. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM CSUR
41(3), Article 15, 1–58 (2009)

13. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. ACM SoCG. pp. 253–262 (2004)

14. de Vries, T., Chawla, S., Houle, M.E.: Density-preserving projections for large-scale
local anomaly detection. KAIS 32(1), 25–52 (2012)

15. Dong, W., Charikar, M., Li, K.: Efficient k-nearest neighbor graph construction
for generic similarity measures. In: Proc. WWW. pp. 577–586 (2011)

16. Erickson, J.: On the relative complexities of some geometric problems. In: Proceed-
ings of the 7th Canadian Conference on Computational Geometry, Quebec City,
Quebec, Canada, August 1995. pp. 85–90 (1995)

17. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam Library
of Object Images. Int. J. Computer Vision 61(1), 103–112 (2005)

18. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proc. VLDB. pp. 518–529 (1999)

19. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proc.
SIGMOD. pp. 47–57 (1984)

20. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math.
Ann. 38(3), 459–460 (1891)

21. Imamura, Y., Shinohara, T., Hirata, K., Kuboyama, T.: Fast hilbert sort algorithm
without using hilbert indices. In: Proc. SISAP. pp. 259–267 (2016)

22. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proc. STOC. pp. 604–613 (1998)

23. Jin, W., Tung, A.K., Han, J.: Mining top-n local outliers in large databases. In:
Proc. KDD. pp. 293–298 (2001)

24. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. In: Conference in Modern Analysis and Probability, Contemporary Mathe-
matics, vol. 26, pp. 189–206. American Mathematical Society (1984)

25. Kabán, A.: On the distance concentration awareness of certain data reduction
techniques. Pattern Recognition 44(2), 265–277 (2011)

26. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large
datasets. In: Proc. VLDB. pp. 392–403 (1998)

27. Kollios, G., Gunopulos, D., Koudas, N., Berchthold, S.: Efficient biased sampling
for approximate clustering and outlier detection in large datasets. IEEE TKDE
15(5), 1170–1187 (2003)

28. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier
scores. In: Proc. SDM. pp. 13–24 (2011)

29. Kriegel, H.P., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: Are
we comparing algorithms or implementations? KAIS pp. 1–38 (2016)

30. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proc. KDD.
pp. 157–166 (2005)

31. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semantic Web J. (2014)

32. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM TKDD
6(1), 3:1–39 (2012)

33. Matoušek, J.: On variants of the Johnson–Lindenstrauss lemma. Random Struc-
tures & Algorithms 33(2), 142–156 (2008)

34. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing. Tech. rep., International Business Machines Co. (1966)

35. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE TPAMI 36(11), 2227–2240 (2014)

36. Nguyen, H.V., Gopalkrishnan, V.: Efficient pruning schemes for distance-based
outlier detection. In: Proc. ECML PKDD. pp. 160–175 (2009)

37. Orair, G.H., Teixeira, C., Wang, Y., Meira Jr., W., Parthasarathy, S.: Distance-
based outlier detection: Consolidation and renewed bearing. PVLDB 3(2), 1469–
1480 (2010)

38. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast outlier
detection using the local correlation integral. In: Proc. ICDE. pp. 315–326 (2003)

39. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: Proc. SIGMOD. pp. 427–438 (2000)

40. Rousseeuw, P.J., Hubert, M.: Robust statistics for outlier detection. WIREs
DMKD 1(1), 73–79 (2011)

41. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A frame-
work for clustering uncertain data. PVLDB 8(12), 1976–1979 (2015)

42. Schubert, E., Zimek, A., Kriegel, H.P.: Local outlier detection reconsidered: a gen-
eralized view on locality with applications to spatial, video, and network outlier
detection. Data Min. Knowl. Disc. 28(1), 190–237 (2014)

43. Schubert, E., Zimek, A., Kriegel, H.P.: Fast and scalable outlier detection with
approximate nearest neighbor ensembles. In: Proc. DASFAA. pp. 19–36 (2015)

44. Silpa-Anan, C., Hartley, R.I.: Optimised kd-trees for fast image descriptor match-
ing. In: Proc. CVPR (2008)

45. Venkatasubramanian, S., Wang, Q.: The Johnson-Lindenstrauss transform: An em-
pirical study. In: Proc. ALENEX Workshop (SIAM). pp. 164–173 (2011)

46. Wang, Y., Parthasarathy, S., Tatikonda, S.: Locality sensitive outlier detection: A
ranking driven approach. In: Proc. ICDE. pp. 410–421 (2011)

47. Zhang, X., Dou, W., He, Q., Zhou, R., Leckie, C., Kotagiri, R., Salcic, Z.: LSHiFor-
est: A generic framework for fast tree isolation based ensemble anomaly analysis.
In: Proc. ICDE (2017)

48. Zimek, A., Campello, R.J.G.B., Sander, J.: Ensembles for unsupervised outlier
detection: Challenges and research questions. SIGKDD Explor. 15(1), 11–22 (2013)

49. Zimek, A., Campello, R.J.G.B., Sander, J.: Data perturbation for outlier detection
ensembles. In: Proc. SSDBM. pp. 13:1–12 (2014)

50. Zimek, A., Gaudet, M., Campello, R.J.G.B., Sander, J.: Subsampling for efficient
and effective unsupervised outlier detection ensembles. In: Proc. KDD. pp. 428–436
(2013)

51. Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection
in high-dimensional numerical data. Stat. Anal. Data Min. 5(5), 363–387 (2012)

