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Abstract. Analyzing high-dimensional data poses many challenges due to the
“curse of dimensionality”. Not all high-dimensional data exhibit these character-
istics because many data sets have correlations, which led to the notion of intrinsic
dimensionality. Intrinsic dimensionality describes the local behavior of data on a
low-dimensional manifold within the higher dimensional space.
We discuss this effect, and describe a surprisingly simple approach modifica-
tion that allows us to reduce local intrinsic dimensionality of individual points.
While this unlikely will be able to “cure” all problems associated with high di-
mensionality, we show the theoretical impact on idealized distributions and how
to practically incorporate it into new, more robust, algorithms. To demonstrate
the effect of this adjustment, we introduce the novel Intrinsic Stochastic Outlier
Score (ISOS), and we propose modifications of the popular t-Stochastic Neighbor
Embedding (t-SNE) visualization technique for intrinsic dimensionality, intrinsic
t-Stochastic Neighbor Embedding (it-SNE).

1 Introduction

Analyzing high-dimensional data is a major challenge. Many of our intuitions from
low-dimensional space such as distance and density no longer apply in high-dimension-
al data the same way they do in 2- or 3-dimensional space. For example, the center of a
high-dimensional ball contains only very little mass, whereas the majority of the mass
of a high-dimensional ball is in its shell. Grid-based approaches do not work well to par-
tition high-dimensional data, because the number of grid cells grows exponentially with
the dimensionality, so almost all cells will be empty. We are particularly interested in
anomaly detection approaches for high-dimensional data, where many distance-based
algorithms are known to suffer from the “curse of dimensionality” [43].

To understand the performance of algorithms, it is advisable to visualize the results,
but visualization of high-dimensional data has similar problems because of the sheer
number and correlations of attributes to visualize [1]. A promising recent visualization
method is t-SNE [35], which embeds data in a way that preserves neighborhoods, but
not distances and densities, as seen in Figure 1, where the density information of the
Gaussian distribution is largely lost, but neighborhoods are to a large extend preserved.

In this article, we improve the concept of “stochastic neighbors” which forms the
base for SNE [16], t-SNE [35], and the outlier detection method SOS [24]. We study

https://doi.org/10.1007/978-3-319-68474-1_13


the distance concentration effect and construct a way to avoid the loss of discrimination
(although not a universal “cure” for the curse of dimensionality), which we integrate
into stochastic neighbors, to construct the improved ISOS outlier detection and it-SNE
projection technique for visualizing anomalies in high intrinsic dimensionality.

2 Related Work

2.1 The Curse of Dimensionality

The “curse of dimensionality” was initially coined in combinatorial optimization [4],
but now refers to a whole set of phenomena associated with high dimensionality [20,17].
We focus here on the loss of “discrimination” of distances as described by [6]. In-
tuitively, this curse means that the distances to the closest neighbor and the farthest
neighbor become relatively similar, up to the point where they become “indiscernible”.
This can be formalized as:

lim
dim→∞

E
[
maxy 6=x d(x,y)−miny 6=x d(x,y)

miny 6=x d(x,y)

]
→ 0. (1)

This can be proven for idealized distributions, but the effect can be observed in real data,
and affects the ability of many distance-based methods, e.g., in outlier detection [43].

Figure 2a visualizes the distribution of distances from the origin of a multivariate
standard normal distribution, i.e. X = (

∑
d Y

2
i )

1/2 with Yi∼N (0; 1). The resulting
distance distribution is a Chi distribution with d degrees of freedom. To visualize the
concentration of relative distances, we normalize the x-axis by the mean distance. We
can see the p.d.f. concentrate around the mean, and the c.d.f. change abruptly at the

(a) Gaussian distribution (b) t-SNE projection

Fig. 1: t-SNE projections do not preserve distances or density, but try to preserve neighbors
(red x markers indicate points more than 2 standard deviations from the center)
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(a) Relative deviation
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(b) Absolute deviation

Fig. 2: Deviation from the expected value of a multivariate standard normal distribution.



mean, as expected by Equation 1. However, if we look at absolute deviations from
the mean in Figure 2b (by centering the distributions on the mean rather than scaling
them), we can no longer see any distance concentration. In terms of deviation from the
mean, the distributions appear very similar (for d>2)—so there should be some leeway
here against the curse of dimensionality. (But unfortunately, this transformation yields
negative values, so it cannot be used as a distance normalization in most applications.)

[43] have shown that the distance concentration effect itself is not the main problem,
and outliers can still be easy to detect if this effect occurs. [5] have shown that we can
discern well-separated clusters in high dimensionality, because we can still distinguish
near from far neighbors. [20] show that by ignoring the absolute distance values, but
instead counting the overlap of neighborhoods (“shared nearest neighbors”), we can
still cluster high-dimensional data, reflecting the observation that the ranking of near
points remains meaningful, even when the relative distances do not provide contrast.

There are many other aspects of the curse of dimensionality [43,17], such as hub-
ness [37], which we will not focus on here (and hubness has also been observed in lower
dimensional data [33]). Some issues with high dimensionality are very practical in na-
ture: preprocessing, scaling, and weighting of features is often very important for data
analysis, but becomes difficult to do with a large number of features of very different
nature, such as when combining continuous, discrete, ordinal and categoricial features.
Such problems are also beyond the scope of this article.

2.2 Intrinsic Dimensionality

Data on a line in a 10-dimensional space will essentially behave as if it were in a 1-
dimensional space. This led to the notion of intrinsic dimensionality, and this intuition
has been formally captured for example by the expansion dimension [26].

Text data is often represented in a very high-dimensional data space, where every
different word in the corpus corresponds to a dimension. Based on a naive interpretation
of the curse of dimensionality, one would assume such a representation to be problem-
atic; yet text search works very well. In the vector space model, text data usually is
sparse, i.e., most attributes are zero. Adding additional attributes that are constant, or
copies of existing attributes, usually do not increase the difficulty of a data set much.

Therefore, it is good to distinguish between the representation dimensionality—the
number of attributes used for encoding the data—and the effective dimensionality for
data analysis. [17] establishes the theoretical connection between dimensionality, dis-
criminability, density, and distance distributions; as well as the connection to extreme
value theory [18]. Intrinsic dimensionality is often estimated using tail estimators, in
particular using the Hill [15] estimator, or a weighted average thereof [21]. More recent
approaches involve the expansion dimension [26] and the Generalized Expansion Di-
mension (GED) [19]. [2] survey and compare several estimation techniques for intrinsic
dimensionality. Implementations of several estimators for intrinsic dimensionality can
be found in the ELKI data mining toolkit [39]. The Hill maximum-likelihood estimator
uses the sorted distances of x to its k-nearest neighbors y1 . . . yk for estimation [2]:

ÎDHill(x) :=−
(

1
k−1

∑k−1

i=1
log d(x,yi)

d(x,yk)

)−1
(2)



2.3 Outlier Detection

Distance-based outlier detection is focused around the idea that outliers are in less dense
areas of the data space [28], and that distances can be used to quantify density. Since
then, many outlier detection methods have been proposed. We focus our comparison on
methods that use the full-dimensional k-nearest neighbors, although many other meth-
ods exist [43]. [38] use the distance to the k-nearest neighbor, which can be seen as
a “curried” version of the original DB-outlier approach by [28]. [3] use the average
distance to all k-nearest neighbors instead. LOF [7] introduced the idea of comparing
the density of a point to the densities of its neighbors. LoOP [29] attempts to estimate
a local outlier probability, while INFLO [25] also takes reverse nearest neighbor rela-
tionships into account, while KDEOS [40] uses kernel density estimation instead of the
simpler estimate of aforementioned methods. ODIN [14] simply counts how often a
point occurs in the nearest-neighbors of others, while SOS [24] (c.f. Section 3.3) uses
the probability of a point not occurring in stochastic neighborhoods as outlier score.
Many more variations of these ideas exist [43,8], and a fair evaluation of such methods
is extremely difficult, due to the sensitivity of the methods to data sets, preprocessing,
and parameterization [8]. There exist many methods that focus on identifying outliers
in feature subspaces [30,36,27,10] or with respect to correlations in the data [32].

2.4 Stochastic Neighbor Embedding

Stochastic neighbor embedding (SNE) [16] and t-distributed stochastic neighbor em-
bedding (t-SNE) [35] are visualization techniques designed for visualizing high-dimen-
sional data in a low-dimensional space (typically 2 or 3 dimensions). These methods
originate from computer vision and deep learning research where they are used to vi-
sualize large image collections. In contrast to techniques such as principal component
analysis (PCA) and multidimensional scaling (MDS), which try to maximize the spread
of dissimilar objects, SNE focuses on placing similar objects close to each other, i.e., it
preserves locality rather than large distances. But while these methods were developed
(and used with great success) on data sets with a high representational dimensionality,
[35] noted that the “relatively local nature of t-SNE makes it sensitive to the curse of
the intrinsic dimensionality of the data” and that “t-SNE might be less successful if it is
applied on datasets with a very high intrinsic dimensionality” [35].

The key idea of these methods is to model the high-dimensional input data with
an affinity probability distribution, and use gradient descent to optimize the low-di-
mensional projection to exhibit similar affinities. By using an affinity which has more
weight on nearby points rather than Euclidean distance, one obtains a non-linear pro-
jection that preserves local neighborhoods, while away points are mostly independent
of each other. In SNE, Gaussian kernels are used in the projected space, whereas t-SNE
uses a Student-t distribution. This distribution is well suited for the optimization pro-
cedure because it is computationally inexpensive, heavier-tailed, and has a well-formed
gradient. The heavier tail of t-SNE is beneficial for visualization, because it increases
the tendency of the projection to separate unrelated points in the projected space. But
as seen in Figure 1, t-SNE does not preserve distances or densities well, so we should
rather not use the projected coordinates for clustering or outlier detection.



In the input domain, (t-)SNE uses a Gaussian kernel for the input distribution. Given
a point i, the conditional probability density pj|i of any neighbor point j is computed as

pj|i =
exp(−‖xi−xj‖2/2σ2

i )∑
k 6=i exp(−‖xi−xk‖2/2σ2

i )
(3)

where ‖xi−xj‖ is the Euclidean distance, and the kernel bandwidth σi is optimized for
every point to have the desired perplexity h (an input parameter roughly correspond-
ing to the number of neighbors to preserve). The symmetric affinity probability pij is
then obtained as the average of the conditional probabilities pij = 1

2 (pi|j + pj|i) and is
subsequently normalized such that the total sum is

∑
i6=j pij = 1.

SNE uses a Gaussian distribution (similar to Equation 3, but with constant σ) in the
projected space, and t-SNE improved this by using the Student-t distribution instead:

qij =
(1+‖yi−yj‖2)−1∑

k 6=l(1+‖yk−yl‖2)−1 (4)

The denominator normalizes the sum to a total of
∑
i 6=j qij =1. The mismatch between

the two distributions P and Q (given by pij and qij) can now be measured using the
Kullback-Leibler divergence [16]:

KL(P ||Q) :=
∑

i

∑
j
pij log

pij
qij

(5)

By also using a small constant minimum pij and qij , we can prevent unrelated points
from being placed too close. To minimize the mismatch of the two distributions, we can
use the vector gradient δCδyi (for Student-t / t-SNE, as derived by [35]):

δC
δyi

:= 4
∑

j
(pij − qij) qij Z (yi− yj) (6)

where Z =
∑
k 6=l(1+ ‖yk − yl‖2)−1 (c.f. [34]).

Starting with an initial random solution Y0 = {yi}, the solution is then iteratively
optimized using gradient descent with learning rate η and momentum α as used by [35]:

Yt+1← Yt− η δCδY +α (Yt−Yt−1) (7)

The resulting projection y is usually good for visualization, because it preserves
neighborhood rather well, but also does not place objects too close to each other. The
t-distributed variant t-SNE is often subjectively nicer, because the heavier tail of the
student-t distribution leads to a more even tendency to separate points, and thus to more
evenly fill the available space. The resulting projections in general tend to be circular.

3 Intrinsic Stochastic Neighbors

3.1 Distance Power Transform for the Curse of Intrinsic Dimensionality

The Stochastic Neighbor Embedding approaches are susceptible to the curse, because
they use the distance to the neighbors to compute neighbor weights, which will become
too similar to be useful at discriminating neighbors. When we lose distance discrimina-
tion, it follows from Equation 3 that for a data set of sizeN : limd→∞ pj|i→ 1/(N−1),
limd→∞ pij → 1/(N − 1)2, and that therefore SNE does no longer work well.



Recent advances in understanding intrinsic dimensionality [17] connect intrinsic
dimensionality to modeling the near-neighbor tail of the distance distribution with ex-
treme value theory [18]. An interesting property of intrinsic dimensionality is that it
changes with certain transformations [18, Table 1], such as the power transform. Let X
be a random variable as in [18], and g(x):=c · xm with c and m constants. Let FX be
the cumulative distribution of X , Y = g(X) and FY the resulting cumulative distribu-
tion. Then the intrinsic dimensionality changes by IDFX

(x) = m · IDFY
(c · xm) [18,

Table 1]. By choosing m= IDFX
(x)/t for any t > 0, we therefore obtain:

IDFY
(c ·xm) = IDFX

(x)/m= t (8)

where we can choose c > 0 as desired, e.g., for numerical reasons. This variable X
serves a theoretical model for the distance distribution on the “short tail” (the nearest
neighbors), and IDFX

is the intrinsic dimensionality. This observation means that we
can transform our distance distribution of any desired dimensionality t.

In Figure 3, we revisit the theoretical model of a multivariate normal distribution
that we used in Section 2.1, but this time we transform the x-axis with a power trans-
form using m=

√
d and c such that the mean is 1. The power transform yields a trans-

formation that retains the 0 (which the deviation from the mean in Figure 2b did not),
but which allows the numerical discrimination of distances. One may have assumed
that m= d would be the best choice in this scenario of a d-dimensional hyperball. This
holds true in the limit at the center of the ball, but the decreasing density of the Gaus-
sian yields a smaller expansion rate and therefore a decreasing intrinsic dimensionality
as we move outward [19]. Beware that this is a very much idealized model, and that in
practical applications, we will simply estimate m from the data.

To improve stochastic neighbor approaches, we propose the following remedy to
the distance concentration effect: Based on the k-nearest neighbors of the point of in-
terest x, first estimate the local intrinsic dimensionality ID(x). Then use d′(x, yi) :=
c · d(x, yi)m (c.f. Equation 8) with m = ID(x)/2 to transform them into squared dis-
tances, and c=1/maxy d(x, y)

m such that the farthest neighbor always has distance 1.
The distances d(x, y) to the neighbors are transformed using

d′2(x, y) = d(x, y)
m
/maxz d(x, z)

m
=
( d(x,y)
maxz d(x,z)

)m
(9)

We then use this locally modified distance instead of the squared Euclidean distance to
compute pi|j using Equation 3 (to simplify, we also substitute βi :=−1/2σ2

i ):

p′j|i =
exp(βid

′2
i (xi,xj))∑

k 6=i exp(βid′2i (xi−xk))
(10)

We can then continue to optimize βi by binary search to obtain the desired perplexity h
as done for regular SNE and t-SNE.

log2 Perplexity =−
∑

j 6=i
pj|i log2 pj|i (11)

On data that was not normalized, regular t-SNE may fail to find a suitable βi with
binary search.1 This happens when the binary search begins with βi = −1 (or σi = 1),

1 The author of t-SNE writes: “Presumably, your data contains some very large numbers, causing
the binary search for the correct perplexity to fail. [. . . ] Just divide your data or distances by a
big number, and try again.” https://lvdmaaten.github.io/tsne/#faq

https://lvdmaaten.github.io/tsne/#faq
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Fig. 3: Deviation from a multivariate standard normal distribution, after power transform.

but exp(βidi(xi,xj))=0 for all j if the initial distances are too large. With our choice of
c this will not happen anymore (as the maximum d′ is 1), but the ELKI [39] implementa-
tion that we use initializes search with the heuristic estimate β̂i=− 1

2h/meanjd(xi,xj)
2

(motivated by σ̂2 ∼ meanj d(xi, xj)
2) which usually converges with fewer iterations.

Since we only rely on the nearest neighbors, our new approach is compatible with the
fast Barnes-Hut approximation [34].

3.2 Consensus Affinity Combination

SNE and t-SNE produce a symmetric affinity by averaging the two asymmetric affini-
ties: pij = 1

2 (pi|j+pj|i). While this has the desirable property of retaining the total sum,
it also tends to pull outliers too close to their neighbors. From a probabilistic point of
view, we can interpret this as point xi and xj being connected if either of them chooses
to link. Instead, we may desire them to link only if there is “consensus”, by using

p′ij :=
√
p′i|j · p′j|i. (12)

The resulting affinity matrix will be more sparse, and therefore it is desirable to use
a larger perplexity and neighborhood size than for t-SNE. But since the estimation of
intrinsic dimensionality suggests to use at least 100 neighbors, whereas t-SNE is often
used with a perplexity of about 40, this is not an additional restriction.

Next, the resulting affinities are normalized to have a total sum of 1 (as in regular t-
SNE), to balance attractive and repulsive forces during the t-SNE optimization process.
We then simply replace pij in the gradient (Equation 6) with the new p′ij (Equation 12).

3.3 Intrinsic Stochastic Outlier Selection

The new outlier detection method Intrinsic Stochastic Outlier Selection (ISOS) is—as
the name indicates—a modification of the earlier but rather unknown SOS method pub-
lished in a technical report [23], a PhD thesis [22], and in a maritime application [24].
The key idea of this approach is that every data point “nominates” its neighbors, and
can be seen as a smooth version of ODIN [14].

The original proposal of SOS involved generating random graphs based on an affin-
ity distribution in order to identify frequently unlinked objects as outliers. But the ex-
pensive graph sampling process can be avoided, and the probability of a node being
disconnected can be computed in closed-form using the simple equation [23]:

SOS(xi) :=
∏

j 6=i
1− pi|j (13)



Algorithm 1: Pseudocode for ISOS
Input: DB: Database
Input: k: Number of neighbors to use
Data: logscore: Outlier scores, initially 1

1 Build a neighbor search index on database DB (if not present)
2 foreach point xi in database DB do
3 kNN(xi)← Find k-nearest neighbors (with distances)
4 ID(xi)← Estimate intrinsic dimensionality of kNN(xi)
5 d′(xi)← Adjust squared distances (Equation 9)
6 Choose βi such that perplexity ≈ k/3
7 pj|i← Compute normalized affinities (Equation 10)
8 foreach neighbor xj in kNN(x) do
9 logscore(xj)← logscore(xj)+ log(1− pj|i)

10 return 1
/ (

1+ e−x·log h · (1−ϕ)/ϕ
)

for each score in logscore

The original algorithm, similar to SNE and t-SNE, has quadratic runtime complexity,
making it expensive to apply to large data. But because of the exponential function,
affinities will quickly drop to a negligible value. Van der Maaten [34] uses the k=d3he
nearest neighbors to approximate the pi|j . We incorporate this idea into SOS for two
reasons: (i) to improve scalability, and (ii) to make it more comparable to k-nearest
neighbor based outlier detection algorithms. Instead of the perplexity parameter h, this
variant—which we denote as KNNSOS—has the neighborhood size parameter k com-
mon to k-nearest neighbor approaches, and uses a derived perplexity of h = k/3. Our
ISOS method in turn is an extension of this KNNSOS approach, which uses the k-
nearest neighbors first to estimate the local intrinsic dimensionality of each point, then
uses Equation 13 with our adjusted affinity p′i|j . For pi|j� 1, Equation 13 does not give
a high numerical precision. We therefore suggest to compute the scores in logspace,

logSOS(xi) :=
∑

j 6=i
log(1− pi|j) (14)

and use the log1p(-p_i|j) function if available for increased numerical precision.
While SOS yields an outlier probability (which makes the score more interpretable
by users [31]), it is not as well-behaved as indicated by its authors [23], because the
expected value even for a clear inlier is not 0, since we normalized the pi|j to sum up
to 1. Intuitively, every point is supposed to distribute its weight to approximately h (the
perplexity) neighbors. Assuming a clique of h+ 1 objects, each at the same distance
such that pi|j = 1/h, every point will have the probability

E[SOS] :=
∏h

1
(1− 1/h) =

(
h−1
h

)h≈h→∞ 1/e (15)

Alternatively, we can assume the null model that every point is equidistant, and thus
every neighbor is chosen with pi|j = 1/N , which yields the same limit. Note that
log 1/e = −1, if we perform the same computations in logscale. Therefore, we fur-
ther propose to normalize to the resulting outlier probabilities, by comparing them to
the expected value. The likelihood ratio SOS(xi)/E[SOS] in logspace yields simply
the addition of 1 to the log scores. After this transformation, the average score will be
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Fig. 4: Histogram of scores on MNIST data. Dotted lines indicate the expected average value.

about 0.5, but centeral values will be too frequent. This is caused by the aggregation
over effectively ≈ h values, and we can reduce this by multiplication with log h (in log
space). Last but not least, we need to add a prior to reflect that anomalies are rare and not
half of the data, but rather the majority of points should have a very low score. We use
a desired outlier rate of ϕ= 1%, which yields a prior odds ratio of (1−ϕ)/ϕ [32,40].

To convert this back to a probability, we can use the logistic function:
l =−(logSOS′(xi)+ 1) · log h (16)

ISOS(xi) = 1/ (1+ exp(l) · (1−ϕ)/ϕ) (17)

Figure 4 shows (i) the original score before the adjustments on the MNIST test data
set, (ii) after adjusting for the expected value (and logistic transformation), (iii) after
also taking the perplexity into account, and (iv) with the prior assumption of outliers
being 1% rare. The last histogram is the least “informative”, but naturally we must
expect the majority of outlier scores to be close to zero, so in fact only the exponential-
like curve in the final histogram indicates a score that can satisfy the intuition of an
“outlier probability”. We show the top 50 outliers in Figure 8b.

Algorithm 1 gives the pseudocode for ISOS. Rather than directly computing the
score for every point, we initialize all scores with 1 (=− log1/e), then iterate over each
point xi and adjust the scores of each neighbor xj by adding log(1−pj|i). This reduces
the memory requirements from O(n2) to O(n), and makes the algorithm trivial to dis-
tribute except for the nearest neighbor search. For distributed and parallel processing,
approximative nearest neighbor search is preferable, and has shown to be surprisingly
effective for outlier detection, because errors may be larger for outliers than for in-
liers [42]. Note that in line 8 we can stop when pj|i is zero, as further away points
will no longer change the scores of neighbors. For KNNSOS, do not estimate intrinsic
dimensionality in line 4, and use the unmodified distances in line 5 of Algorithm 1.

This is a second-order local outlier detection method (c.f. [41]), where the kNN
are used to estimate affinity, and the score depends on the reverse kNN. But because
of the efficient message-based algorithm above, we do not need to compute the reverse
nearest neighbors (which would require complex indexes for acceleration [11,9]).

4 Experiments

We implemented our approach in Java as part of the ELKI [39] data mining framework,
extending the existing Barnes-Hut approximation [34] t-SNE variant, and using the
aggregated Hill estimator [21] for intrinsic dimensionality as default.



1 2 5 10 20 50 100 200
−0.05

0.00

0.05

0.10

0.15

0.20

●

●

●

●

●
● ●

●
●

●
● ●

●
●●●

●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

ALOI_withoutdupl_norm

Neighborhood size

A
dj

us
te

d 
A

P

0

●ISOS kNNSOS ODIN kNN kNNW

0

LOF SimplifiedLOF LoOP INFLO KDEOS

(a) ALOI data set, AdjAP
(normalized, no duplicates, k logscale)

1 2 5 10 20 50 100 200
0.00

0.01

0.02

0.03

0.04

0.05

●

●

●

●
●

● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Pima_withoutdupl_norm_02_v01

Neighborhood size

A
dj

us
te

d 
A

P

0

●ISOS kNNSOS ODIN kNN kNNW

0

LOF SimplifiedLOF LoOP INFLO KDEOS

(b) Pima data set, AdjAP
(normalized, no duplicates, k logscale)
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(c) ANNThyroid data, AdjAP
(normalized, no duplicates, k logscale)

Fig. 5: Performance of ISOS and related algorithms on selected data sets.

4.1 ISOS Outlier Detection

As common when performing a throrough evaluation of outlier detection, the results
here remain unconclusive when performed on a large scale of methods and parame-
ters [8,13]. For any method, we can find parameters and data where it performs best,
or worst. KNNSOS and ISOS are, not surprisingly, no exception to this rule. Results
claiming superior performance on a task as unspecific as anomaly detection are unfor-
tunately often based on too narrow experiments, and unfair parameterization. We will
contribute this method to the ELKI data mining toolkit, and submit the entire results for
integration into the benchmark repository of [8].

Figure 5a shows anecdotal evidence of the capabilities of ISOS on the popular ALOI
data set (color histograms from images of small objects [12], prepared as in [31]) with
respect to adjusted average precision. We show the results for the normalized variant
with duplicates removed [8], but the results on the other variants and with other evalu-
ation measures are similar. On this data set, ISOS outperforms all other methods by a
considerable margin (except for KNNSOS, which it only outperforms a little bit). Fur-
thermore, the proposed method is fairly stable with respect to the choice of k, as long as
the values are not chosen too small (for a reliable estimation of intrinsic dimensionality
k≥100 is suggested). This makes it rather easy to choose the parameters. On other data
sets such as Pima (Figure 5b), the simple kNN distance methods work better—although
none of the methods really worked well at all. This data set is also likely too small for
methods based on intrinsic dimensionality. On ANNThyroid data, KDEOS, LoOP and
ODIN compete for the lead, but both KNNSOS and ISOS work reasonably well, too.
But again, the results are so low, that the data set must be considered questionable for
distance based outlier detection. In Figure 6, we visualize the data sets with PCA, MDS,
t-SNE and it-SNE. In none of these projections, the labeled outlier correspond well to
the human intuition of outlierness, and we cannot expect any unsupervised algorithm to
perform well. For ANNThyroid, we can see artifacts caused by binary attributes in this
data set in each projection. In conclusion of the outlier experiments—and in line with
prior research [31,8,13]—there is no clear winner, and ensemble approaches that com-
bine kNN outlier, LOF, but also ISOS, remain the most promising research direction.

4.2 it-SNE Visualization

In Figure 7 we apply t-SNE on the popular MNIST data set, using the smaller “test”
data set only. Colors indicate different digits. All runs used the same random seed for



(a) ALOI, PCA (b) ALOI 20% sample, MDS (c) ALOI, t-SNE (d) ALOI, it-SNE

(e) Pima, PCA (f) Pima, MDS (g) Pima, t-SNE (h) Pima, it-SNE

(i) ANNThyroid, PCA (j) ANNThyroid, MDS (k) ANNThyroid, t-SNE (l) ANNThyroid, it-SNE

Fig. 6: Projections of outlier detection data sets. Red x indicate the labeled outliers.

comparability. The difference between regular t-SNE (Figure 7a) and t-SNE with the
distances adjusted according to intrinsic dimensionality (Equation 9, Figure 7b) is not
very big (classes are slightly more compact in the new projection). This can easily be
explained with this data set having nominally 784 dimensions (28× 28 pixel), but the
intrinsic dimensionality is on average just 6.1. Therefore, from an intrinsic dimension-
ality point of view, it is not a very high-dimensional data set.

Using the consensus affinity (Equation 12), yields a better result in Figure 7c. Out-
liers are more pronounced in this visualization, as they are pushed away from all other
points rather than attaching themselves to the border of a nearby class (we can also
see the same effect in the outlier detection data sets, Figure 6). Because of the overall
greater extend, the classes appear more compact. The difference is most pronounced
with the yellow class (containing the digit 1), which had many outlier foreign-class
attached to it, that are now separate. Why these objects apparently prefer attaching to
digit 1 is not clear, but may related to the fact that this class has on average the fewest
pixels, the least variation within the class, and the lowest intrinsic dimensionality.

In Figure 8 we visualize the top 50 outliers detected by ISOS, in the it-SNE pro-
jection (Figure 8a) as well as the images (Figure 8b), as well as the images for KNN,
LOF, and KNNSOS. Most of these outliers were separated from the data classes well
by the projection, but we need to keep in mind that the outlier algorithm did not use the
projection, and that the projection does not guarantee to separate everything as desired.



(a) t-SNE (b) it-SNE with pij = pi|j + pj|i (c) it-SNE with pij =
√
pi|j · pj|i

Fig. 7: Comparison of MNIST test data (using Barnes-Hut approximations).
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(c) kNN, k = 1
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(d) LOF, k = 20
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Fig. 8: Top 50 outliers in MNIST test data

The rather low scores of ≈ 30% reflect the fact that these outliers are still recognizable
digits. Note that these outliers were found based on the raw pixel information. Better
results can be expected by using deep learning and class information.

5 Conclusions

This paper contributes important insights into the distance-based aspects of the curse
of dimensionality, contributes a much improved outlier detection method, and modifies
the popular t-SNE method for intrinsic dimensionality and use in anomaly detection.

– We have shown that the distance concentration effect of the “curse of dimensionality”
sometimes can be avoided with a simple power transform.

– The proposed adjustment for intrinsic dimensionality provides more discriminative
affinities when using stochastic neighbor approaches on high-dimensional data.

– The “consensus” affinity separates outliers from nearby clusters better, and thus pro-
vides substantially better visualization when used for outlier detection, as regular
t-SNE would attach outliers to nearby clusters.

– The SOS outlier detection method was accelerated using the k-nearest neighbors
(KNNSOS), a correction for intrinsic dimensionality was added (ISOS), and the re-
sulting outlier scores are normalized such that they can be interpreted as a probability
how likely an object belongs to a rare “outlier” class.

The use of the power transform is a promising direction to avoid the distance concen-
tration effect in the later stages of data mining, but it is an open research question how a
similar improvement could be achieved to improve for example nearest neighbor search.
Thus, it is not a universal “cure” to the curse of dimensionality, yet.
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