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t-Stochastic Neighbor Embedding

t-SNE [MH08], based on SNE [HR02] is a popular “neural network” visualization
technique using stochastic gradient descent (SGD)
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t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)
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t-Stochastic Neighbor Embedding

SNE and t-SNE use a Gaussian kernel in the input domain:

pj|i =
exp(−‖xi−xj‖2/2σ2

i )∑
k 6=i exp(−‖xi−xk‖2/2σ2

i )

where each σ2i is optimized to have the desired perplexity

(Perplexity ≈ number of neighbors to preserve)

Asymmetric, so they simply use: pij := (pi|j + pj|i)/2

(We suggest to prefer pij =
√
pi|j · pj|i for outlier detection)

In the output domain, as qij , SNE uses a Gaussian (with constant σ), t-SNE uses a
Student-t-Distribution.

z Kullback-Leibler divergence can be minimized using stochastic gradient descent to
make input and output a�inities similar.
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SNE vs. t-SNE

Gaussian weights in the output domain as used by SNE vs. t-SNE:
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t-SNE has more emphasis on separating points.
z even neighbors will be “fanned out” a bit
z “be�er” separation of far points (SNE has 0 weight on far points)
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The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim
dim→∞

E
[
maxy 6=x d(x,y)−miny 6=x d(x,y)

miny 6=x d(x,y)

]
→ 0.

z Distances to near points and to far points become similar.

The Gaussian kernel uses relative distances:
exp(−‖xi − xj‖2/2σ2i )

Distance Expected Distance

With high-dimensional data, all pij become similar!

z We cannot find a “good” σi anymore.

5



The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim
dim→∞

E
[
maxy 6=x d(x,y)−miny 6=x d(x,y)

miny 6=x d(x,y)

]
→ 0.

z Distances to near points and to far points become similar.

The Gaussian kernel uses relative distances:
exp(−‖xi − xj‖2/2σ2i )

Distance Expected Distance

With high-dimensional data, all pij become similar!

z We cannot find a “good” σi anymore.

5



Distribution of Distances

On the short tail distance distributions o�en look like this:
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In high-dimensional data, almost all nearest neighbors
concentrate on the right hand side of this plot.
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Distribution of Distances

Gaussian weights as used by SNE / t-SNE:
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For low-dimensional data, Gaussian weights work good.

For high-dimensional data: almost the same weight for all points. 7



Distribution of Distances

Gaussian kernels adjusted for intrinsic dimensionality:
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In theory, they behave like Gaussian kernels in low dimensionality.
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Distance Power Transform

Let X be a random variable (“of distances”) as in [Hou15],
For constants c and m, use the transformation

Y = g(X) with g(x) :=c · xm

Let FX , FY be the cumulative distribution of X , Y .

Then IDFX
(x) = m · IDFY

(c · xm) [Hou15, Table 1].

By choosing m = IDFX
(x)/t for any t > 0, one therefore obtains:

IDFY
(c · xm) = IDFX

(x)/m = t

where one can choose c > 0 as desired, e.g., for numerical reasons.

z We can transform distances to any desired ID = t!
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Distance Power Transform

For each point p:

1. Find k′ nearest neighbors of p (should be k′ > 100, k′ > k)
2. Estimate ID at p
3. Choose m = IDFX

(x)/t, t = 2, c = k-distance
4. Transform distances:

d′(p, q) := c · d(p, q)m

5. Use Gaussian kernel, perplexity, t-SNE, . . .

Can we defeat the curse this easily?

Probably not: this is a hack to cure one symptom.
�estion: is our definition of ID too permissive?
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Experimental Results: it-SNE

Projections of the ALOI outlier data set (as available at [Cam+16]):

PCA t-SNE it-SNE
Data set: Color histograms of 50.000 photos of 1000 objects
Each class: same object, di�erent angles & di�erent light
Labeled outliers: classes reduced to 1-3 objects — May contain other “true” outliers! 11



Experimental Results: it-SNE

Projection of the ALOI outlier data set with t-SNE:
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Experimental Results: it-SNE

Projection of the ALOI outlier data set with it-SNE:
Labeled &
Unlabeled
Outliers!
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Experimental Results: it-SNE

On the well-known MNIST data set t-SNE:
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Experimental Results: it-SNE

On the well-known MNIST data set it-SNE:

Outliers!
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Outlier Detection: ODIN

ODIN (Outlier Detection using Indegree Number) [HKF04]:

1. Find the k nearest neighbors of each object.

2. Count how o�en each object was returned.
= in-degree of the k nearest neighbor graph

3. Objects with no (or fewest) occurrences are outliers.

Works, but many objects will have the exact same score.

Which k to use? Can change abruptly with k.

Can we make a continuous (“smooth”) version of this idea?
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Outlier Detection: SOS

SOS (Stochastic Outlier Selection) [JPH13]

Idea: assume every object can link to one neighbor randomly.

Inliers: likely to be linked to, outliers: likely to be not linked to.

1. Compute pj|i of SNE / t-SNE for all i, j:

pj|i =
exp(−‖xi−xj‖2/2σ2

i )∑
k 6=i exp(−‖xi−xk‖2/2σ2

i )

use Gaussian weights to prefer near neighbors.

2. The SOS outlier score is then:

SOS(xj) :=
∏

i 6=j
1− pj|i

= probability that no neighbor links to object j.
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KNNSOS and ISOS Outlier Detection

We propose two variants of this idea:

1. Since most pj|i will be zero, use only the k nearest neighbors.
Reduces runtime from O(n2) to possibly O(n log n), O(n4/3).

KNNSOS(xj) :=
∏

i∈kNN(xj)
1− pj|i

2. Estimate ID(xi), and use transformed distances for pj|i.
ISOS: Intrinsic-dimensionality Stochastic Outlier Selection

Note: The t-SNE author, van der Maaten, already proposed an approximate and
index-based variant of t-SNE:
Barnes-Hut t-SNE, which also uses the kNN only [Maa14].
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Experimental Results: Outlier Detection
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Experimental Results: Outlier Detection
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Experimental Results: Outlier Detection
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Experimental Results: Outliers in MNIST
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Conclusions

I We can “reduce” intrinsic dimensionality to ID = t using:

m = IDFX
(x)/t

But is this more than a cure for a symptom (for our estimate)?
I t-SNE benefits from this adjustment:

We get more di�erence in neighbor weights.
(We can also use SNE, but we did not experiment with this.)

I t-SNE tends to hide outliers, unless we use

pij =
√
pi|j · pj|i instead of pij =

1
2(pi|j + pj|i)

I We can make SOS outlier faster using the KNN only
I ISOS improves SOS by adjusting for ID.
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Thank You!

�estions?

How do we fix ID?
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