
Intrinsic t-Stochastic Neighbor Embedding
for Visualization and Outlier Detection

A Remedy Against the Curse of Dimensionality?

Erich Schubert, Michael Gertz

October 4, 2017, Munich, Germany

Heidelberg University

t-Stochastic Neighbor Embedding

t-SNE [MH08], based on SNE [HR02] is a popular “neural network” visualization
technique using stochastic gradient descent (SGD)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

10 dimensional space 2 dimensional space

Tries to preserve the neighbors – but not the distances. 1

t-Stochastic Neighbor Embedding

t-SNE [MH08], based on SNE [HR02] is a popular “neural network” visualization
technique using stochastic gradient descent (SGD)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

10 dimensional space 2 dimensional space

Tries to preserve the neighbors – but not the distances. 1

t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
-13

-10

-7

-4

-1

2

5

8

11

14

SNE

SNE/t-SNE do not preserve density / distances.
Can get stuck in a local optimum!

2

t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

-50 -40 -30 -20 -10 0 10 20 30 40 50
-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

t-SNE

SNE/t-SNE do not preserve density / distances.
Can get stuck in a local optimum!

2

t-Stochastic Neighbor Embedding

SNE and t-SNE use a Gaussian kernel in the input domain:

pj|i =
exp(−‖xi−xj‖2/2σ2

i)∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)

where each σ2i is optimized to have the desired perplexity

(Perplexity ≈ number of neighbors to preserve)

Asymmetric, so they simply use: pij := (pi|j + pj|i)/2

(We suggest to prefer pij =
√
pi|j · pj|i for outlier detection)

In the output domain, as qij , SNE uses a Gaussian (with constant σ), t-SNE uses a
Student-t-Distribution.

z Kullback-Leibler divergence can be minimized using stochastic gradient descent to
make input and output a�inities similar.

3

SNE vs. t-SNE

Gaussian weights in the output domain as used by SNE vs. t-SNE:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.5 1 1.5 2

Gaussian Weight, σ²=1
Student-t Weight t=1

t-SNE has more emphasis on separating points.
z even neighbors will be “fanned out” a bit
z “be�er” separation of far points (SNE has 0 weight on far points)

4

The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim
dim→∞

E
[
maxy 6=x d(x,y)−miny 6=x d(x,y)

miny 6=x d(x,y)

]
→ 0.

z Distances to near points and to far points become similar.

The Gaussian kernel uses relative distances:
exp(−‖xi − xj‖2/2σ2i)

Distance Expected Distance

With high-dimensional data, all pij become similar!

z We cannot find a “good” σi anymore.

5

The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim
dim→∞

E
[
maxy 6=x d(x,y)−miny 6=x d(x,y)

miny 6=x d(x,y)

]
→ 0.

z Distances to near points and to far points become similar.

The Gaussian kernel uses relative distances:
exp(−‖xi − xj‖2/2σ2i)

Distance Expected Distance

With high-dimensional data, all pij become similar!

z We cannot find a “good” σi anymore.

5

Distribution of Distances

On the short tail distance distributions o�en look like this:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Neighbor Density, 3D
Neighbor Density, 10D
Neighbor Density, 50D

In high-dimensional data, almost all nearest neighbors
concentrate on the right hand side of this plot.

6

Distribution of Distances

Gaussian weights as used by SNE / t-SNE:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

Gaussian Weight, σ²=0.3
Gaussian Weight, σ²=1
Gaussian Weight, σ²=2

For low-dimensional data, Gaussian weights work good.

For high-dimensional data: almost the same weight for all points. 7

Distribution of Distances

Gaussian kernels adjusted for intrinsic dimensionality:

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

Gaussian Weight, id=3, σ²=1
Gaussian Weight, id=10, σ²=1
Gaussian Weight, id=50, σ²=1

In theory, they behave like Gaussian kernels in low dimensionality.

8

Distance Power Transform

Let X be a random variable (“of distances”) as in [Hou15],
For constants c and m, use the transformation

Y = g(X) with g(x) :=c · xm

Let FX , FY be the cumulative distribution of X , Y .

Then IDFX
(x) = m · IDFY

(c · xm) [Hou15, Table 1].

By choosing m = IDFX
(x)/t for any t > 0, one therefore obtains:

IDFY
(c · xm) = IDFX

(x)/m = t

where one can choose c > 0 as desired, e.g., for numerical reasons.

z We can transform distances to any desired ID = t!

9

Distance Power Transform

For each point p:

1. Find k′ nearest neighbors of p (should be k′ > 100, k′ > k)
2. Estimate ID at p
3. Choose m = IDFX

(x)/t, t = 2, c = k-distance
4. Transform distances:

d′(p, q) := c · d(p, q)m

5. Use Gaussian kernel, perplexity, t-SNE, . . .

Can we defeat the curse this easily?

Probably not: this is a hack to cure one symptom.
�estion: is our definition of ID too permissive?

10

Distance Power Transform

For each point p:

1. Find k′ nearest neighbors of p (should be k′ > 100, k′ > k)
2. Estimate ID at p
3. Choose m = IDFX

(x)/t, t = 2, c = k-distance
4. Transform distances:

d′(p, q) := c · d(p, q)m

5. Use Gaussian kernel, perplexity, t-SNE, . . .

Can we defeat the curse this easily?
Probably not: this is a hack to cure one symptom.
�estion: is our definition of ID too permissive?

10

Experimental Results: it-SNE

Projections of the ALOI outlier data set (as available at [Cam+16]):

PCA t-SNE it-SNE
Data set: Color histograms of 50.000 photos of 1000 objects
Each class: same object, di�erent angles & di�erent light
Labeled outliers: classes reduced to 1-3 objects — May contain other “true” outliers! 11

Experimental Results: it-SNE

Projection of the ALOI outlier data set with t-SNE:

11

Experimental Results: it-SNE

Projection of the ALOI outlier data set with it-SNE:
Labeled &
Unlabeled
Outliers!

11

Experimental Results: it-SNE

On the well-known MNIST data set t-SNE:

12

Experimental Results: it-SNE

On the well-known MNIST data set it-SNE:

Outliers!

12

Outlier Detection: ODIN

ODIN (Outlier Detection using Indegree Number) [HKF04]:

1. Find the k nearest neighbors of each object.

2. Count how o�en each object was returned.
= in-degree of the k nearest neighbor graph

3. Objects with no (or fewest) occurrences are outliers.

Works, but many objects will have the exact same score.

Which k to use? Can change abruptly with k.

Can we make a continuous (“smooth”) version of this idea?

13

Outlier Detection: SOS

SOS (Stochastic Outlier Selection) [JPH13]

Idea: assume every object can link to one neighbor randomly.

Inliers: likely to be linked to, outliers: likely to be not linked to.

1. Compute pj|i of SNE / t-SNE for all i, j:

pj|i =
exp(−‖xi−xj‖2/2σ2

i)∑
k 6=i exp(−‖xi−xk‖2/2σ2

i)

use Gaussian weights to prefer near neighbors.

2. The SOS outlier score is then:

SOS(xj) :=
∏

i 6=j
1− pj|i

= probability that no neighbor links to object j.

14

KNNSOS and ISOS Outlier Detection

We propose two variants of this idea:

1. Since most pj|i will be zero, use only the k nearest neighbors.
Reduces runtime from O(n2) to possibly O(n log n), O(n4/3).

KNNSOS(xj) :=
∏

i∈kNN(xj)
1− pj|i

2. Estimate ID(xi), and use transformed distances for pj|i.
ISOS: Intrinsic-dimensionality Stochastic Outlier Selection

Note: The t-SNE author, van der Maaten, already proposed an approximate and
index-based variant of t-SNE:
Barnes-Hut t-SNE, which also uses the kNN only [Maa14].

15

Experimental Results: Outlier Detection

1 2 5 10 20 50 100 200
−0.05

0.00

0.05

0.10

0.15

0.20

●

●

●

●

●
● ●

●
●

●
● ●

●
●●●

●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

ALOI_withoutdupl_norm

Neighborhood size

A
dj

us
te

d
A

P

0

●ISOS kNNSOS ODIN kNN kNNW

0

LOF SimplifiedLOF LoOP INFLO KDEOS

16

Experimental Results: Outlier Detection

1 2 5 10 20 50 100 200

−0.04

−0.02

0.00

0.02

0.04

●

●

●
● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●
●●●

Annthyroid_withoutdupl_norm_02_v01

Neighborhood size

A
dj

us
te

d
A

P

0

●ISOS kNNSOS ODIN kNN kNNW

0

LOF SimplifiedLOF LoOP INFLO KDEOS

16

Experimental Results: Outlier Detection

1 2 5 10 20 50 100 200
0.00

0.01

0.02

0.03

0.04

0.05

●

●

●

●
●

● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Pima_withoutdupl_norm_02_v01

Neighborhood size

A
dj

us
te

d
A

P

0

●ISOS kNNSOS ODIN kNN kNNW

0

LOF SimplifiedLOF LoOP INFLO KDEOS

16

Experimental Results: Outliers in MNIST

0 (33.4%)

5 (33.1%)

8 (32.7%)

7 (32.3%)

1 (32.3%)

8 (32.2%)

8 (32.1%)

6 (31.9%)

8 (31.7%)

9 (31.6%)

7 (31.5%)

5 (31.4%)

4 (31.3%)

1 (31.1%)

9 (31.1%)

8 (31.0%)

9 (30.7%)

3 (30.7%)

5 (30.5%)

4 (30.4%)

1 (30.3%)

7 (30.3%)

2 (30.2%)

7 (30.1%)

8 (30.1%)

0 (30.1%)

9 (30.0%)

0 (30.0%)

0 (29.9%)

0 (29.8%)

2 (29.8%)

1 (29.7%)

7 (29.6%)

9 (29.6%)

5 (29.6%)

2 (29.5%)

2 (29.5%)

3 (29.2%)

8 (29.2%)

4 (29.2%)

7 (29.0%)

1 (29.0%)

4 (28.9%)

7 (28.9%)

2 (28.8%)

6 (28.8%)

8 (28.8%)

8 (28.7%)

0 (28.7%)

4 (28.6%)

17

Conclusions

I We can “reduce” intrinsic dimensionality to ID = t using:

m = IDFX
(x)/t

But is this more than a cure for a symptom (for our estimate)?
I t-SNE benefits from this adjustment:

We get more di�erence in neighbor weights.
(We can also use SNE, but we did not experiment with this.)

I t-SNE tends to hide outliers, unless we use

pij =
√
pi|j · pj|i instead of pij =

1
2(pi|j + pj|i)

I We can make SOS outlier faster using the KNN only
I ISOS improves SOS by adjusting for ID.

18

Thank You!

�estions?

How do we fix ID?

19

Thank You!

�estions?

How do we fix ID?

19

References i

[Bey+99] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Sha�. “When Is ”Nearest Neighbor” Meaningful?” In: Int.
Conf. Database Theory ICDT. 1999.

[Cam+16] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, E. Schubert, I. Assent, and
M. E. Houle. “On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical
study”. In: Data Min. Knowl. Discov. 30.4 (2016).

[HKF04] V. Hautamäki, I. Kärkkäinen, and P. Fränti. “Outlier Detection Using k-Nearest Neighbour Graph”. In: Int.
Conf. Pa�ern Recognition, ICPR. 2004.

[Hou15] M. E. Houle. Inlierness, outlierness, hubness and discriminability: an extreme-value-theoretic foundation.
Tech. rep. NII-2015-002E. National Institute of Informatics, Tokyo, Japan, 2015.

[HR02] G. E. Hinton and S. T. Roweis. “Stochastic Neighbor Embedding”. In: Adv. in Neural Information Processing
Systems 15, NIPS. 2002.

[JPH13] J. H. M. Janssens, E. O. Postma, and H. J. van den Herik. “Density-Based Anomaly Detection in the Maritime
Domain”. In: Situation Awareness with Systems of Systems. 2013.

20

http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding

References ii

[Maa14] L. van der Maaten. “Accelerating t-SNE using tree-based algorithms”. In: J. Machine Learning Research 15.1
(2014).

[MH08] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In: J. Machine Learning Research 9.11
(2008).

21

http://dl.acm.org/citation.cfm?id=2697068
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

