Intrinsic t-Stochastic Neighbor Embedding

for Visualization and Outlier Detection

A Remedy Against the Curse of Dimensionality?

Erich Schubert, Michael Gertz
October 4, 2017, Munich, Germany

Heidelberg University

t-Stochastic Neighbor Embedding

t-SNE [MH08], based on SNE [HR02] is a popular “neural network” visualization
technique using stochastic gradient descent (SGD)

70

10 dimensional space ————— 2 dimensional space

Tries to preserve the neighbors — but not the distances.

t-Stochastic Neighbor Embedding

t-SNE [MH08], based on SNE [HR02] is a popular “neural network” visualization
technique using stochastic gradient descent (SGD)

70

10 dimensional space ————— 2 dimensional space

Tries to preserve the neighbors — but not the distances.

t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)

70

s
Mﬁ,ﬁ{»“’-ﬁ:ﬁt{’% f
N P et
SRR L AL

Fh T
B A
+1 e

10 S N E iwﬁ ; A
W++

1 20 30 40 50 60 70 8 90 100 4110087 6543210123456 78 01011

4
§ 3

SNE/t-SNE do not preserve density / distances.

t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)

100 50

90 40 $
80 ; 30
% 20

70 #

N i

-40 e

=t t-SNE

40 30 20 40 0 10 20 30

10 20 30 40 50 60 70 80 90 100 Y50

40 50

SNE/t-SNE do not preserve density / distances.

t-Stochastic Neighbor Embedding

SNE and t-SNE use a Gaussian kernel in the input domain:
o exp(—||lzi—z,]*/207)
Pili = 5 exp(—wi—a1]2 /207)

where each o7 is optimized to have the desired perplexity

(Perplexity =~ number of neighbors to preserve)

Asymmetric, so they simply use: p;; :== (pi; + pjji)/2
(We suggest to prefer p;; = /p;; - ;i for outlier detection)

In the output domain, as ¢;;, SNE uses a Gaussian (with constant o), t-SNE uses a
Student-t-Distribution.

» Kullback-Leibler divergence can be minimized using stochastic gradient descent to
make input and output affinities similar.

SNE vs. t-SNE

Gaussian weights in the output domain as used by SNE vs. t-SNE:

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

T
Gaussian Weight, 6°=1 ——
Student-t Weight t=1 ——

0.5

t-SNE has more emphasis on separating points.

» even neighbors will be “fanned out” a bit

» “better” separation of far points (SNE has 0 weight on far points)

The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim E |™a%uze d(z,y)—miny -, d(z,y) -0
dim—o0 miny; d(z,y) '

» Distances to near points and to far points become similar.

The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim E | 2%uze d('a;,y)—miny;,gz d(z,y) Y
ming ., d(z,y)

dim—oo

» Distances to near points and to far points become similar.

The Gaussian kernel uses relative distances:
exp(—||z; — x;]1%/207)
7 N

Distance Expected Distance

With high-dimensional data, all p;; become similar!

» We cannot find a “good” o; anymore.

Distribution of Distances

On the short tail distance distributions often look like this:

1 T T T T
Neighbor Density, 3D ——
Neighbor Density, 10D ——
08 | Neighbor Density, 50D A
0.6
04
02
0 1
0 0.2 0.4 0.6 0.8 1

In high-dimensional data, almost all nearest neighbors

concentrate on the right hand side of this plot.

Distribution of Distances

Gaussian weights as used by SNE / t-SNE:

0.8 T

T T T
Gaussian Weight, 6°=0.3 ——

Gaussian Weight, 6?=1 —— B
Gaussian Weight, 6°=2

0.7

0.6 -
05 -
0.4 -
03 -
0.2 -
01 \
0 . . .
0 0.2 0.4 0.6 0.8

For low-dimensional data, Gaussian weights work good.

For high-dimensional data: almost the same weight for all points.

Distribution of Distances

Gaussian kernels adjusted for intrinsic dimensionality:
0.4 T T

035

03

0.25

02

0.15 |

0.1

2

-1 ——

Gaussian Weight, id=3, ¢
0.05 Gaussian Weight, id=10, =1 —— 1
Gaussifm Weight, idI:SO, o’=1

0
0 0.2 0.4 0.6 0.8 1

In theory, they behave like Gaussian kernels in low dimensionality.

Distance Power Transform

Let X be a random variable (“of distances”) as in [Hou15],

For constants ¢ and m, use the transformation
Y =g9(X) with g(z):=c- 2™
Let F'x, Fy be the cumulative distribution of X, Y.
Then IDp, (2) =m-IDpg, (c-2™) [Houl5, Table 1].
By choosing m = IDp, (x)/t for any t > 0, one therefore obtains:
IDp, (c-2™) =IDp, (x)/m =t
where one can choose ¢ > 0 as desired, e.g., for numerical reasons.

» We can transform distances to any desired ID = ¢!

Distance Power Transform

For each point p:

1. Find &’ nearest neighbors of p (should be ¥’ > 100, &’ > k)
2. Estimate ID at p

3.

4. Transform distances:

Choose m = IDp, (z)/t, t = 2, ¢ = k-distance

d'(p,q) == c-d(p,q)"™

Use Gaussian kernel, perplexity, t-SNE, ...

Can we defeat the curse this easily?

Distance Power Transform

For each point p:

1. Find &’ nearest neighbors of p (should be ¥’ > 100, &’ > k)
2. Estimate ID at p

3.

4. Transform distances:

Choose m = IDp, (z)/t, t = 2, ¢ = k-distance

d'(p,q) == c-d(p,q)"™

Use Gaussian kernel, perplexity, t-SNE, ...

Can we defeat the curse this easily?

Probably not: this is a hack to cure one symptom.

Question: is our definition of ID too permissive?

Experimental Results: it-SNE

Projections of the ALOI outlier data set (as available at [Cam+16]):

2z & 8 2z o 3z 3

PCA
Data set: Color histograms of 50.000 photos of 1000 objects

Each class: same object, different angles & different light

Labeled outliers: classes reduced to 1-3 objects — May contain other “true” outliers! 1

Experimental Results: it-SNE

Projection of the ALOI outlier data set with t-SNE:
8o T

70 -+
60
50

0 +

Experimental Results: it-SNE

Projection of the ALOI outlier data set with it-SNE:
90

Labeled &
Unlabeled
QOutliers!

80 |

70

60 |-

50

0 +

Experimental Results: it-SNE

On the well-known MNIST data set t-SNE:

70 T

30 +

20 +

Experimental Results: it-SNE

On the well-known MNIST data set it-SNE:

80

70

60

50

40

30

20

10

Outliers!

Outlier Detection: ODIN

ODIN (Outlier Detection using Indegree Number) [HKF04]:

1. Find the k nearest neighbors of each object.

2. Count how often each object was returned.

= in-degree of the k nearest neighbor graph

3. Objects with no (or fewest) occurrences are outliers.

Works, but many objects will have the exact same score.
Which k to use? Can change abruptly with k.

Can we make a continuous (“smooth”) version of this idea?

Outlier Detection: SOS

SOS (Stochastic Outlier Selection) [JPH13]
Idea: assume every object can link to one neighbor randomly.

Inliers: likely to be linked to, outliers: likely to be not linked to.

1. Compute pj; of SNE / t-SNE for all 4, j:
_ exp(—||lzi—=,*/207)
bili = 7, i exp(—llzi—anlP/207)
use Gaussian weights to prefer near neighbors.
2. The SOS outlier score is then:

SOS(LL“J) = H'L;ﬁ] 1-—- Djli
= probability that no neighbor links to object j.

KNNSOS and ISOS Outlier Detection

We propose two variants of this idea:

1. Since most p;|; will be zero, use only the k nearest neighbors.
Reduces runtime from O(n?) to possibly O(nlogn), O(n*/3).

KNNSOS(z;) := HiekNN(wj) 1—pj
2. Estimate ID(x;), and use transformed distances for Dili-

ISOS: Intrinsic-dimensionality Stochastic Outlier Selection

Note: The t-SNE author, van der Maaten, already proposed an approximate and
index-based variant of t-SNE:
Barnes-Hut t-SNE, which also uses the kNN only [Maa14].

Experimental Results: Outlier Detection

ALOI_withoutdupl_norm
0.20

0.15

Adjusted AP
o
=
?

o
o
hi

0.00+

-0.05 T T T T T

1 2 5 10 20 50 100
Neighborhood size

-8 1SOS -+~ kNNSOS -4 ODIN -+ kNN - %= KNNW

-o LOF -7~ SimplifiedLOF - & LoOP -% INFLO -4 KDEOS

Experimental Results: Outlier Detection

Annthyroid_withoutdupl_norm_02_v01

0.04

0.0+~

Adjusted AP

-0.02

-0.04—

0004

2 5 10 20 50 100 200
Neighborhood size
-8 I1SOS -+~ kNNSOS -4 ODIN -+ kNN - %= KNNW
-< LOF -V~ SimplifiedLOF - & LoOP -% INFLO -4 KDEOS

Experimental Results: Outlier Detection

0.05

Pima_withoutdupl_norm_02_v01

0.04

Adjusted AP
o
o
9

o
o
T

0.01

0.00

ISOS
LOF

-

-9

kNNSOS
SimplifiedLOF

Neighborhood size

- A

B

ODIN
LoOP

-+
-%

kNN
INFLO

- % kKNNW
-4 KDEOS

Experimental Results: Outliers in MNIST

A |

0 (33.4%) 1(32.3%)

L%

5(33.1%) 8(32.2%)

B <

8(32.7%) 8(32.1%)

7 @

7 (32.3%) 6 (31.9%)

8(30.1%) 0(30.0%) 2 (29.8%)

” © |

0(30.1%) 0(29.9%) 1(29.7%)

O

9(30.0%) 0(29.8%) 7 (29.6%)

>

8 (31.7%) 4 (31.3%)

7 1

9 (31.6%) 1(31.1%)

7 q

7 (31.5%) 9 (31.1%)

g7 4

9 (30.7%) 1(30.3%)

5T

3(30.7%) 7 (30.3%)

5 (30.5%) 2 (30.2%)

1

4 (30.4%) 7 (30.1%)

4

(28.9%) 6(28.8%) 0(28.7%)

¥ ¢

7(28.9%) 8(28.8%) 4(28.6%)

2 8

2(28.8%) 8(28.7%)

-

Conclusions

» We can “reduce” intrinsic dimensionality to ID = ¢ using:
m =1IDpg, (z)/t
But is this more than a cure for a symptom (for our estimate)?
» t-SNE benefits from this adjustment:
We get more difference in neighbor weights.
(We can also use SNE, but we did not experiment with this.)

» t-SNE tends to hide outliers, unless we use

Pij = \/pij - pjji instead of pi; = §(pi; + pjii)
> We can make SOS outlier faster using the KNN only

> ISOS improves SOS by adjusting for ID.

Thank You!

Questions?

Thank You!

Questions?

How do we fix ID?

References i

[Bey+99]

[Cam+16]

[HKF04]

[Hou15]

[HR02]

[JPH13]

K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. “When Is "Nearest Neighbor” Meaningful?” In: Int.
Conf. Database Theory ICDT. 1999.

G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenkova, E. Schubert, I. Assent, and
M. E. Houle. “On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical
study”. In: Data Min. Knowl. Discov. 30.4 (2016).

V. Hautamiki, I. Karkkainen, and P. Franti. “Outlier Detection Using k-Nearest Neighbour Graph”. In: Int.
Conf. Pattern Recognition, ICPR. 2004.

M. E. Houle. Inlierness, outlierness, hubness and discriminability: an extreme-value-theoretic foundation.
Tech. rep. NI1-2015-002E. National Institute of Informatics, Tokyo, Japan, 2015.

G. E. Hinton and S. T. Roweis. “Stochastic Neighbor Embedding”. In: Adv. in Neural Information Processing
Systems 15, NIPS. 2002.

J. H. M. Janssens, E. O. Postma, and H. J. van den Herik. “Density-Based Anomaly Detection in the Maritime
Domain”. In: Situation Awareness with Systems of Systems. 2013.

20

http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding

References ii

[Maa14] L. van der Maaten. “Accelerating t-SNE using tree-based algorithms”. In: J. Machine Learning Research 15.1
(2014).

[MH08] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In: J. Machine Learning Research 9.11
(2008).

2

http://dl.acm.org/citation.cfm?id=2697068
http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

