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t-Stochastic Neighbor Embedding

t-SNE [MH08], based on SNE [HR02] is a popular “neural network” visualization
technique using stochastic gradient descent (SGD)
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t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)
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t-Stochastic Neighbor Embedding

SNE [HR02] and t-SNE [MH08] are popular “neural network” visualization techniques
using stochastic gradient descent (SGD)
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t-Stochastic Neighbor Embedding

SNE and t-SNE use a Gaussian kernel in the input domain:
o exp(—||lzi—z,]*/207)
Pili = 5 exp(—wi—a1 ]2 /207)

where each o7 is optimized to have the desired perplexity

(Perplexity =~ number of neighbors to preserve)

Asymmetric, so they simply use: p;; :== (pi; + pjji)/2
(We suggest to prefer p;; = /p;; - ;i for outlier detection)

In the output domain, as ¢;;, SNE uses a Gaussian (with constant o), t-SNE uses a
Student-t-Distribution.

» Kullback-Leibler divergence can be minimized using stochastic gradient descent to
make input and output affinities similar.



SNE vs. t-SNE

Gaussian weights in the output domain as used by SNE vs. t-SNE:
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t-SNE has more emphasis on separating points.

» even neighbors will be “fanned out” a bit

» “better” separation of far points (SNE has 0 weight on far points)



The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim E |™a%uze d(z,y)—miny -, d(z,y) -0
dim—o0 miny; d(z,y) '

» Distances to near points and to far points become similar.



The Curse of Dimensionality

Loss of “discrimination” of distances [Bey+99]:

lim E | 2%uze d('a;,y)—miny;,gz d(z,y) Y
ming ., d(z,y)

dim—oo

» Distances to near points and to far points become similar.

The Gaussian kernel uses relative distances:
exp(—||z; — x;]1%/207)
7 N

Distance  Expected Distance

With high-dimensional data, all p;; become similar!

» We cannot find a “good” o; anymore.



Distribution of Distances

On the short tail distance distributions often look like this:
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In high-dimensional data, almost all nearest neighbors

concentrate on the right hand side of this plot.



Distribution of Distances

Gaussian weights as used by SNE / t-SNE:

0.8 T

T T T
Gaussian Weight, 6°=0.3 ——

Gaussian Weight, 6?=1 —— B
Gaussian Weight, 6°=2

0.7

0.6 -
05 -
0.4 -
03 -
0.2 -
01 \
0 . . .
0 0.2 0.4 0.6 0.8

For low-dimensional data, Gaussian weights work good.

For high-dimensional data: almost the same weight for all points.



Distribution of Distances

Gaussian kernels adjusted for intrinsic dimensionality:
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In theory, they behave like Gaussian kernels in low dimensionality.



Distance Power Transform

Let X be a random variable (“of distances”) as in [Hou15],

For constants ¢ and m, use the transformation
Y =g9(X) with g(z):=c- 2™
Let F'x, Fy be the cumulative distribution of X, Y.
Then IDp, (2) =m-IDpg, (c-2™) [Houl5, Table 1].
By choosing m = IDp, (x)/t for any t > 0, one therefore obtains:
IDp, (c-2™) =IDp, (x)/m =t
where one can choose ¢ > 0 as desired, e.g., for numerical reasons.

» We can transform distances to any desired ID = ¢!



Distance Power Transform

For each point p:

1. Find &’ nearest neighbors of p (should be ¥’ > 100, &’ > k)
2. Estimate ID at p

3.

4. Transform distances:

Choose m = IDp, (z)/t, t = 2, ¢ = k-distance

d'(p,q) == c-d(p,q)"™

Use Gaussian kernel, perplexity, t-SNE, ...

Can we defeat the curse this easily?



Distance Power Transform

For each point p:

1. Find &’ nearest neighbors of p (should be ¥’ > 100, &’ > k)
2. Estimate ID at p

3.

4. Transform distances:

Choose m = IDp, (z)/t, t = 2, ¢ = k-distance

d'(p,q) == c-d(p,q)"™

Use Gaussian kernel, perplexity, t-SNE, ...

Can we defeat the curse this easily?

Probably not: this is a hack to cure one symptom.

Question: is our definition of ID too permissive?



Experimental Results: it-SNE

Projections of the ALOI outlier data set (as available at [Cam+16]):

2z & 8 2z o 3z 3

PCA
Data set: Color histograms of 50.000 photos of 1000 objects

Each class: same object, different angles & different light

Labeled outliers: classes reduced to 1-3 objects — May contain other “true” outliers! 1



Experimental Results: it-SNE

Projection of the ALOI outlier data set with t-SNE:
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Experimental Results: it-SNE

Projection of the ALOI outlier data set with it-SNE:
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Experimental Results: it-SNE

On the well-known MNIST data set t-SNE:

70 T

30 +

20 +




Experimental Results: it-SNE

On the well-known MNIST data set it-SNE:
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Outliers!



Outlier Detection: ODIN

ODIN (Outlier Detection using Indegree Number) [HKF04]:

1. Find the k nearest neighbors of each object.

2. Count how often each object was returned.

= in-degree of the k nearest neighbor graph

3. Objects with no (or fewest) occurrences are outliers.

Works, but many objects will have the exact same score.
Which k to use? Can change abruptly with k.

Can we make a continuous (“smooth”) version of this idea?



Outlier Detection: SOS

SOS (Stochastic Outlier Selection) [JPH13]
Idea: assume every object can link to one neighbor randomly.

Inliers: likely to be linked to, outliers: likely to be not linked to.

1. Compute pj; of SNE / t-SNE for all 4, j:
_ exp(—||lzi—=,*/207)
bili = 7, i exp(—llzi—anlP/207)
use Gaussian weights to prefer near neighbors.
2. The SOS outlier score is then:

SOS(LL“J) = H'L;ﬁ] 1-—- Djli
= probability that no neighbor links to object j.




KNNSOS and ISOS Outlier Detection

We propose two variants of this idea:

1. Since most p;|; will be zero, use only the k nearest neighbors.
Reduces runtime from O(n?) to possibly O(nlogn), O(n*/3).

KNNSOS(z;) := HiekNN(wj) 1—pj
2. Estimate ID(x;), and use transformed distances for Dili-

ISOS: Intrinsic-dimensionality Stochastic Outlier Selection

Note: The t-SNE author, van der Maaten, already proposed an approximate and
index-based variant of t-SNE:
Barnes-Hut t-SNE, which also uses the kNN only [Maa14].



Experimental Results: Outlier Detection
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Experimental Results: Outlier Detection
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Experimental Results: Outlier Detection
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Experimental Results: Outliers in MNIST
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Conclusions

» We can “reduce” intrinsic dimensionality to ID = ¢ using:
m =1IDpg, (z)/t
But is this more than a cure for a symptom (for our estimate)?
» t-SNE benefits from this adjustment:
We get more difference in neighbor weights.
(We can also use SNE, but we did not experiment with this.)

» t-SNE tends to hide outliers, unless we use

Pij = \/pij - pjji  instead of  pi; = §(pi; + pjii)
> We can make SOS outlier faster using the KNN only

> ISOS improves SOS by adjusting for ID.



Thank You!

Questions?



Thank You!

Questions?

How do we fix ID?
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