
Numerically Stable Parallel Computation of (Co-)Variance
Erich Schubert

Heidelberg University
Heidelberg, Germany

schubert@informatik.uni-heidelberg.de

Michael Gertz
Heidelberg University
Heidelberg, Germany

gertz@informatik.uni-heidelberg.de

ABSTRACT
With the advent of big data, we see an increasing interest in com-
puting correlations in huge data sets with both many instances and
many variables. Essential descriptive statistics such as the variance,
standard deviation, covariance, and correlation can suffer from a
numerical instability known as “catastrophic cancellation” that can
lead to problems when naively computing these statistics with a
popular textbook equation.While this instability has been discussed
in the literature already 50 years ago, we found that even today,
some high-profile tools still employ the instable version.

In this paper, we study a popular incremental technique origi-
nally proposed byWelford, which we extend to weighted covariance
and correlation. We also discuss strategies for further improving
numerical precision, how to compute such statistics online on a
data stream, with exponential aging, with missing data, and a batch
parallelization for both high performance and numerical precision.

We demonstrate when the numerical instability arises, and the
performance of different approaches under these conditions. We
showcase applications from the classic computation of variance
as well as advanced applications such as stock market analysis
with exponentially weighted moving models and Gaussian mixture
modeling for cluster analysis that all benefit from this approach.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance; • Applied computing → Mathematics and statistics;
• Information systems→ Data stream mining;

ACM Reference Format:
Erich Schubert and Michael Gertz. 2018. Numerically Stable Parallel Compu-
tation of (Co-)Variance. In SSDBM ’18: 30th International Conference on Sci-
entific and Statistical Database Management, July 9–11, 2018, Bozen-Bolzano,
Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3221269.
3223036

1 INTRODUCTION
Statistical moments—the mean, variance, skewness, and kurtosis—
are popular quantities to describe the shape of a probability dis-
tribution and are heavily used in descriptive statistics. Covariance
and Pearson correlation extend this concept to measure the joint
variability and linear dependence of multiple variables.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SSDBM ’18: 30th
International Conference on Scientific and Statistical Database Management, July 9–11,
2018, Bozen-Bolzano, Italy, https://doi.org/10.1145/3221269.3223036.

Textbooks will often introduce variance as
Var(X) = E[(X − µ)2] = E[X 2] − E[X]2 (1)

where E[f] denotes the expected value of an expression f , and
µ = E[X] is the arithmetic mean.

The latter form (albeit mathematically correct) is problematic
when used with floating point arithmetics. We will refer to this
method as the “textbook” algorithm, as it is overly popular in text-
books despite its known deficiencies. As long as E[X]2 ≪ E[X 2]
(for example, on centered data with µ = 0 = E[X]), the problem will
not surface. But once we have a data set where E[X 2] ≈ E[X]2, com-
puting the right-hand side will cause a substantial loss of precision.
In Figure 1, we give a toy example, assuming 4 decimal digits of
precision; the commonly used IEEE-754 formats offer 7–8 decimal
digits / 23+1 bits with single precision and 15–16 decimal digits /
52+1 bits with double precision. In the first example, E[X] ≪ E[X 2]
and the result is correct in the maximum possible 4 digits. In the
second example, both values agree on the first four digits, and
computing the true difference would require a higher numerical
precision. The resulting difference in this example is 0, the actual
variance is lost. Because of rounding, we may even get a small
negative variance in the worst case, which can then cause a NaN
(not-a-number) error when computing the square root [12].

If we use Var(X) = E[(X − µ)2] = E
[
(X − E[X])2

]
instead (the

“two pass algorithm”), we can obtain a more precise result. But
computing this equation requires two passes over the data, the
first pass to compute µ = E[X]. For small sized data and in main
memory, this may well be acceptable, but once the data needs to be
read from disk the runtime will usually double. On a live stream of
data, this version cannot be used without storing the entire stream.

“Online” algorithms aim at integrating new data and updating
an existing result without having to recompute everything. For
example, we can “online” compute the mean of a data set X ′ =
X ∪ {xk+1} = {x1, . . . ,xk } ∪ {xk+1} based on the previous mean
µk using µk+1 = 1

k+1 (k · µx + xk+1). The term “online” comes from
the idea of keeping a database “online” (available to serve requests)
rather than having to perform an “offline” computation while no
further changes to the database are permitted.

E[X 2]
−E[X]2

= Var(X)

0 . 1 2 3 4 3 7 4
- 0 . 0 0 0 1 2 3 4
= 0 . 1 2 3 3 1 4 0

0 . 1 2 3 4 3 7 6 2
- 0 . 1 2 3 4 1 5 2 1
= 0 . 0 0 0 0 0 0 0 0

Figure 1: Toy example showing catastrophic cancellation
when using E[X 2] − E[X]2, assuming four decimal digits of
precision. In the left example, the result is correct in all four
digits of precision. But in the right example, the first four
digits cancel out completely, leaving no remaining known
digits, and all precision is lost.

https://doi.org/10.1145/3221269.3223036
https://doi.org/10.1145/3221269.3223036
https://doi.org/10.1145/3221269.3223036

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Erich Schubert and Michael Gertz

The objective of this paper is to discuss numerically stable compu-
tation of variance, correlation and covariance for scientific databases.
Weighted computations will allow us to take uncertainty and im-
portance of data points into account, such as the trade volume of
a stock. Using single pass algorithms, we can perform the com-
putations incrementally in an “online” fashion, and together with
weighted computations in the same framwork we can also use it in
parallel processing and distributed databases.

We will first do a detailed survey of literature in Section 2. In
Section 3, we then introduce and proof a general form for weighted
(co-)variance, from which we can derive many of the optimizations
found in the earlier literature by specializing it to unweighted data
and variance. In Section 4, we discuss how to use the general form
for scenarios such as weighted Pearson correlation, exponentially
weighted moving streaming models, covariance matrixes as used,
e.g., in Gaussian Mixture Modeling (GMM) clustering, and how
to use this to in parallel processing and distributed databases. In
Section 5 we demonstrate the numeric precision, runtime, and
applicability of several approaches in different settings.

2 RELATEDWORK
Algorithms for calculating the variance have a long history in Com-
puter Science, and the related work search for this paper turned out
to be an interesting dive into the history of statistical computing,
with most of the discussion happening in the Communications of
the ACM and Technometrics in the 1970s.

We will first survey approaches mostly following chronological
order, before we present our more general result in Section 3.

Most of the algorithms we discuss here have asymptotic com-
plexity O(n). The main differences are in the so-called constant
factors, which are ignored in asymptotic analysis. For example, the
two-pass algorithmwhich first computes the mean µk := 1

k
∑k
i=1 xi ,

then in a second pass the squared deviations Sk :=
∑k
i=1(xi − µk)

2,
is also of O(n) complexity, but needs to access memory twice. In
the following, the interest is therefore in (a) using only a single
pass over the data, (b) keeping the number of operations for each
data point small, and (c) having a high numerical accuracy.

Welford [27] shows that given k data points x1 . . . xk one can
update the running sum of squared deviations Sk :=

∑k
i=1(xi − µk)

2

and the running average µk := 1
k
∑k
i=1 xi with an additional new

data point xk+1 using the simple algorithm:

µk+1 =
k

k+1 µk +
1

k+1xk+1 (2)

Sk+1 = Sk +
k

k+1 (xk+1 − µk)
2 (3)

The variance can then be simply computed using Var(X) = 1
k Sk .

A similar approach was previously used by Box and Hunter [3]
to update the change in a residual sum. This approach avoids the
aforementioned catastrophic cancellation of the textbook algorithm,
and it is much closer in precision to the two-pass algorithm.Welford
also includes an equations for the sum of products and suggests
how to compute higher-order moments. Knuth [12] gives a very
simple unweighted variant of this algorithm (attributed to Welford):

µk+1 = µk +
1

k+1 (xk+1 − µk) (4)
Sk+1 = Sk + (xk+1 − µk)(xk+1 − µk+1) (5)

Neely [15] compared three methods for computing the mean,
four for computing the standard deviation, and four for computing
the correlation along with the benefits of using double precision.
Except for the textbook algorithm and Welford’s algorithm, the
tested algorithms all require two passes. The main contribution of
Neely is to use a first pass to estimate the mean, and an error term
based on this “trial mean”M1.

M1 =
1
k

∑k

i=1
xi

µk =
1
k

∑k

i=1
xi +

1
k

∑k

i=1
(xi −M1) (6)

Vark = 1
k

∑k

i=1
(xi −M1)

2 − 1
k2

(∑k

i=1
(xi −M1)

)2
(7)

With perfect math, we would haveM1 = µ, and the additional terms
would be 0. But with floating point it can aggregate some rounding
errors, in an approach that shares ideas with Kahan summation [10].
Rodden [18] suggests to use Neely’s approach with integers to
avoid rounding errors for many practical applications at that time.
Van Reeken [26] found Welford’s algorithm to perform better than
evaluated by Neely, when implemented with different rounding,
and suggests a slight variation of the equations:

µk+1 = µk +
1

k+1 (xk+1 − µk) (8)

Sk+1 = Sk + (xk+1 − µk)
2 − 1

k+1 (xk+1 − µk)
2 (9)

Youngs and Cramer [30] reproduce the results of Neely, adding one
additional online algorithm for computing the variance (and sum-
of-products), which we will study in detail below (c.f. Equation 28).
In their experiments, this approach is as accurate as the two-pass
algorithm, but much faster. Ling [14] compares several algorithms,
including Westford’s, Neely’s, Rodden’s, van Reeken’s, and Youngs
and Cramer’s on many different data distributions, but prefers the
textbook algorithm with double precision. Hanson [9] uses the
Givens transformation to derive similar update equations for the
(weighted) mean and variance, and points out that one may also
use negative weights to “remove” data points from the statistic.
West [28] formalizes Hanson’s approach for weights ωi and the
weight sum Ωi =

∑
i ωi as:

x̂k+1 =
1

Ωk+1
(Ωk x̂k + ωk+1xk+1)

XXk+1 = XXk +
ωkΩk
Ωk+1

(xk+1 − x̂k)
2 (10)

Cotton [7] attempts to simplify the approach of Hanson, by re-
introducing the problematic textbook equation to compute the vari-
ance from the sum-of-squares (as discussed by Chan and Lewis [6]),
and with a subtle typo in the variance equation.

West [28] then simplifies Hanson’s equations to reduce the num-
ber of multiplicative operations.

δk+1 = xk+1 − x̂n

δ ′k+1 = δk+1 · ωk+1/Ωk+1

x̂k+1 = x̂k + δ
′
k+1

XXk+1 = XXk + δk+1 · Ωk · δ
′
k+1 (11)

It can be seen as an optimized and weighted version of Welford’s
approach, and offers similar benefits as Van Reeken’s [26].

Numerically Stable Parallel Computation of (Co-)Variance SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Chan and Lewis [6] compare the textbook algorithm, the two-
pass algorithm, West’s algorithm and Cotton’s algorithm with re-
spect to runtime and accuracy. They note that Cottons algorithm
should never be used, as it has the same limitations as the textbook
algorithm without offering benefits. This is also confirmed in our
experiments, as shown in Section 5.1.

Chan et al. [4, 5] discuss error bounds for the textbook and the
two-pass algorithms. They also include a small modification of
the two-pass algorithm that further improves numerical precision,
which they attribute to a suggestion by Åke Björck, but which
we could already find in Neely [15] (c.f. Equation 7). The main
contribution of Chan et al. is a pairwise approach that aggregates
the data in a binary tree to reduce losses. This is one of the few
approaches that is in not in O(n), but the tree-based aggregation
will need O(n logn) operations.

While Welford [27] already mentioned higher moments, Ter-
riberry [25] gives explicit equations for skewness and kurtosis.
Pébay [17] shows how to derive compact update formulas for higher
moments as well as covariance for the unweighted case. Equations
for the incremental (but not parallel) computation of the weighted
Pearson correlation coefficient were previously published in the
Appendix of the PhD thesis by Schubert [20].

The reason why we revisit this long-studied (and apparently
somewhat forgotten, as we will see below) task is due to improve-
ments in CPU architectures, and the applicability of these tech-
niques for parallel and distributed processing. Multiplications in
CPUs have become a lot faster, while divisions remainmuch slower.1
Memory locality becomes an increasingly important contributor
to computation time, which can have a major impact on two-pass
algorithms unless we can keep the entire data in memory.

The widespread use of the numerically instable equation in many
tools can put scientific results into question. We could find the prob-
lematic textbook approach both in widespread relational databases
(e.g., PostgreSQL 10.2), specialized scientific databases (e.g., Ras-
DaMan 9.4), as well as scientific computing platforms such as
Apache Spark MLLib 2.2.1, RapidMiner 8.1.0, and KNIME 3.5.2, con-
firming earlier observations for database systems [11]. MySQL 8.0.4
uses the Knuth-Welford version for variance, but does not include
covariance at all. Numpy 1.14.1 uses the two-pass algorithm, but
appears to create an unnecessary copy of the data. GNU R 3.4.3
uses four passes: one to count non-missing values, one for an ini-
tial mean, a second pass to refine the mean as used by Neely, and
one pass for variance without the Neely adjustment. The imple-
mentation in ELKI used to use the stable two-pass algorithm, and
since ELKI 0.6.0 [1] uses a numerically stable single-pass method
as discussed in this article. None of the implementations we could
find would make use of AVX vectorization of modern CPUs, which
could increase runtime performance substantially.

In this paper, we introduce a general, weighted covariance form,
which not only allows integrating single samples (as in most of the
earlier work), but which can combine the results from arbitrary
subsets. Although it is in spirit with the earlier work, these either

1E.g., on Intel Skylake, according to Fog [8], AVX divisions have a latency of 13-14
cycles and a reciprocal throughput of 8, while multiplication and fused-multiply-add
(a ·b+c in a single instruction) have a latency of 4 cycles and a reciprocal throughput
of as little as 0.5 (i.e., the CPU can process two such instructions in a single clock cycle
due to pipelining). Thus, multiplications can be about 4 to 5 times faster than divisions.

Symbol Meaning
A,B,P partitions of the data set
AB = A⊔B union of disjoint partitions A and B
A ⊔ {b} partition A plus a single b < A
X = {x1, . . .},Y ,V variables
Ω = {ω1, . . .} weights
VP =

∑
i ∈P ωivi weighted sum of V over partition P

ΩP =
∑
i ∈P ωi weight sum of partition P

v̂P =
1
ΩP

∑
i ∈P ωivi weighted mean of V over partition P

v̂wP =
1
ΩP

∑
i ∈P ωiviwi weighted sum of products

VWP =
∑
i ∈P ωi (vi −

1
ΩP

VP)(wi −
1
ΩP

WP)

weighted sum of deviation products
Table 1: Notation used in the general form

do not support weights, or do not support covariance, while our
form has both. One can use this for parallelization with multiple
threads and cores, but also for distributed computation. Covariance
can, of course, be specialized to variance, and we can also compute
weighted Pearson correlation with this approach.

3 UPDATEABLE WEIGHTED (CO-)VARIANCE
In this section, we will derive a very general form that supports both
multiple variables (X ,Y), multiple partitions (A, B), and weights (Ω).
In Table 1 we provide a summary of the most important notations.
After deriving the general form in a few variations in Section 3.1,
we will discuss specializations and optimizations for partitions
containing a single point, as used in online algorithms, in Section 3.2.
In the following Section 4 we will then show how to use the general
form for more specific use cases.

We useA, B,AB=A⊔B and the wildcard P ∈ {A,B,AB} to denote
partitions of the data. Our equations assume disjoint partitions of
samples, and use A⊔B to emphasize that we assume a disjoint
union. X = {xi } and Y = {yi } denote data variables (with wildcards
V ,W ∈ {X ,Y }), Ω= {ωi } is the weight variable. With a subscript,
we useVP :=

∑
i ∈P ωivi to denote the weighted sum over variableV

of all points in partition P , and the corresponding weight sum
is ΩP :=

∑
i ∈P ωi . We denote the sum of deviation products as

VWP =
∑
i ∈P ωi (vi −

1
ΩP

VP)(wi −
1
ΩP

WP).
One can compute the mean and covariance from this by:

v̂P =
1
ΩP

VP = 1
ΩP

∑
i ∈P

ωivi (12)

Cov(V ,W)P = 1
ΩP

VWP =
1
ΩP

∑
i ∈P

ωi (vi − v̂P)(wi − ŵP) (13)

3.1 Derivation of the General Form
In this section, we derive the general equations Equation 21 and
Equation 22 below. A reader who is not interested in the derivation
but only the application can skip to these results, and should still
be able to follow on below.

We will first show some basic properties that we will require
later. Because we require A and B to be disjoint, we have:

VAB =
∑

i ∈A
ωivi +

∑
i ∈B

ωivi = VA +VB (14)

ΩAB =
∑

i ∈A
ωi +

∑
i ∈B

ωi = ΩA + ΩB (15)

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Erich Schubert and Michael Gertz

We can also trivially prove the update equation for the mean:

v̂AB =
ΩA
ΩAB

v̂A +
ΩB
ΩAB

v̂B =
1

ΩAB
(ΩAv̂A + ΩBv̂B) (16)

= v̂A +
ΩB
ΩAB
(v̂B − v̂A) (17)

The König–Huygens formula then gives the “textbook” equality:

Cov(V ,W)P = 1
ΩP

∑
i ∈P

ωi (vi − v̂P)(wi − ŵP) (18)

= 1
ΩP

∑
i ∈P

ωi (viwi −viŵP − v̂Pwi + v̂P ŵP)

=
(
1
ΩP

∑
i ∈P

ωiviwi

)
− v̂P ŵP − v̂P ŵP + v̂P ŵP

= v̂wP − v̂P ŵP (19)

Var(V)P = Cov(V ,V)P = (̂v2)P − (v̂P)2 (20)

This proves that the “textbook” algorithm is mathematically correct
except for aforementioned floating point numerical problems due
to catastrophic cancellation unless 1

ΩP
VVP ≫ (

1
ΩP

VP)
2.

We will now use this form to derive alternative equations to
compute (co-)variance. The key idea is to decompose P into two
partitions A and B. One can either decompose P into a partition A
and a single point {b} to get an online algorithm, or into two arbi-
trary partitions to obtain a parallelization and distribution friendly
approach that allows divide-and-conquer strategies.

To prove the general form, we first establish the following iden-
tity. We derive this in “backwards” direction, which is easier to do.
The proof relies on ΩAB

ΩA
=

ΩA+ΩB
ΩA

=1+ ΩB
ΩA

, since ΩAB =ΩA+ΩB .
1
ΩA

VAWA +
1
ΩB

VBWB −
ΩAΩB
ΩAB

(v̂A − v̂B) (ŵA − ŵB)

= 1
ΩA

VAWA +
1
ΩB

VBWB −
ΩAΩB
ΩAB

(v̂AŵA−v̂AŵB−v̂BŵA+v̂BŵB)

= 1
ΩAB

(
ΩAB
ΩA

VAWA +
ΩAB
ΩB

VBWB

−
ΩB
ΩA

VAWA +VAWB +VBWA −
ΩA
ΩB

VBWB

)
= 1

ΩAB
(VAWA +VAWB +VBWA +VBWB)

= 1
ΩAB

VABWAB = ΩABv̂ABŵAB

Using this identity backwards in Equation 19, we can now show:
VWAB = ΩAB Cov(V ,W)AB = ΩABv̂wAB − ΩABv̂ABŵAB

=
∑

i ∈AB
ωiviwi

− 1
ΩA

VAWA −
1
ΩB

VBWB +
ΩAΩB
ΩAB

(v̂A − v̂B) (ŵA − ŵB)

=
∑

i ∈A
ωiviwi −

1
ΩA

VAWA +
∑

i ∈B
ωiviwi −

1
ΩB

VBWB

+
ΩAΩB
ΩAB

(v̂A − v̂B) (ŵA − ŵB)

VWAB = VWA +VWB +
ΩAΩB
ΩAB

(v̂A − v̂B) (ŵA − ŵB) (21)

or, equivalently, if we use the sum VP instead of the mean v̂P :

VWAB = VWA +VWB +
(ΩBVA−ΩAVB)(ΩBWA−ΩAWB)

ΩAΩBΩAB
(22)

Equation 21 allows us to combine the results of two partitions
A and B, if we know (VWA, v̂A, ŵA,ΩA) and (VWB , v̂B , ŵB ,ΩB),
or, alternatively, (VWA,VA,WA,ΩA) and (VWB ,VB ,WB ,ΩB). This
means that just these four values for each partition provide suf-
ficient statistics to compute the covariance of the combined data
AB = A ⊔ B, and can be aggregated easily. In a distributed system,
it means we need just a tiny amount of communication compared

ΩA

xb

x̂A

++

− /

+=

×

×

+=

XXA

(a) Dependencies using West [28], Equation 11

ΩA

xb

XA

++

×

+=

−

×

×

/

+=

XXA

(b) Dependencies using Youngs and Cramer [30], Equation 28

Figure 2: Dependencies of computations in two different
equations to compute the variance

to transferring the entire data for analysis. By repeated application,
we can also combine the covariances of multiple partitions.

3.2 Optimizations and Specializations
Note that for a single point b (i.e., B = {b}) the statistics are sim-
ply (0,vb ,wb ,ωb) and for V =W = X , Equation 21 simplifies to
Equation 10 as used by Hanson [9].

Because ΩA
ΩAB
(v̂A − v̂B) + 0 = ΩA

ΩAB
(v̂A − v̂B) +

ΩB
ΩAB
(v̂B − v̂B) =

v̂AB − v̂B , we can rewrite Equation 21 to either of:
VWAB = VWA +VWB + ΩB (v̂AB − v̂B) (ŵA − ŵA) (23)

= VWA +VWB + ΩB (v̂A − v̂B) (ŵAB − ŵB) (24)
= VWA +VWB + ΩA (v̂A − v̂AB) (ŵA − ŵB) (25)
= VWA +VWB + ΩA (v̂A − v̂B) (ŵA − ŵAB) (26)

which requires one multiplication and one division less. Again,
specializing this for X = Y , a single new point B = {b}, with unit
weight ΩB = ωb = 1 we get a variant equivalent to Equation 5 by
Welford / Knuth:

XXA⊔{b } = XXA +
(
x̂A⊔{b } − xb

) (
x̂A − xb

)
(27)

Youngs and Cramer [30] use the sum VP instead of the mean v̂P ,
but they only consider variance with V =W =X and B= {b} being
a single new data point at a time. Equation 22 then simplifies to:

XXA⊔{b } = XXA +
1

ΩA(ΩA+1) (XA − ΩAxb)
2 (28)

This variant turned out to be unexpectedly effective, outperform-
ing closely related methods by a factor of 2, as we will see in the
experimental evaluation. The substantial performance benefit of
this approach cannot be explained just with the number of math
operations (it requires one additional multiplication compared to
West’s approach), but it is supposedly due to pipelining capabili-
ties of modern CPUs. The slowest operation is the division, and in
the approaches by Welford, West, and others the division is done
early, and subsequent operations depend on the result. In Youngs
and Cramer’s approach, the division is done last, and none of the

Numerically Stable Parallel Computation of (Co-)Variance SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

other values depend on the previous value of XXA. Therefore, we
assume the CPU can apply pipelining here much more effectively.
In Figure 2a we illustrate the dependency graph for West’s method
(Equation 11), while Figure 2b is that of the approach of Youngs and
Cramer (Equation 28). Colors indicate computation that depends on
the (slow) division, arrows indicate computational dependencies. In
West’s approach, almost all values (except the data and the weights)
depend on the outcome of the division, and we have a cyclic depe-
dency between the division and the running mean x̂b . In Youngs
and Cramer’s approach, only the sum of squares XXb depends
on the division operation. Because of this, we suggest to use the
sums XP , YP instead of the means x̂P , ŷP , and to prefer Equation 22
over Equation 21, but this may require additional benchmarking.
In particular, when additional operations are necessary to load or
compute the input values xi—that can also be pipelined by the
CPU—such benefits can easily disappear.

4 USAGE EXAMPLES
We will now discuss how to use these equations in different scenar-
ios. First of all, we discuss the weighted form of Pearson correlation,
and how we can compute the correlation of long series of sensor
data in Section 4.1. Secondly, we discuss how to extend this to
exponentially weighted moving averages of streaming data in Sec-
tion 4.2. The third scenario detailed is clustering with Gaussian
Mixture Modeling, which requires weighted covariance computa-
tions, in Section 4.3. We then discuss parallel computation with
vectorization in Section 4.4 and with distributed parallelization in
Section 4.5. Last but not least, we discuss options to further increase
numerical precision in Section 4.6. In the following Section 5 we
then experimentally study precision and runtime performance.

4.1 Weighted Pearson Correlation Coefficient
The Pearson product-moment correlation coefficient [16], often de-
noted as PPMCC, PCC or Pearson’s r , is a classic statistical measure
of linear dependence (correlation). It has been applied to various
problems successfully, and “for a 100-year-old index it is remark-
ably unaffected by the passage of time” [19]. It can be interpreted as
standardized covariance, or as standardized slope of the regression
line, but also in several other ways [19].

Weighted Pearson correlation can be defined consistent with the
classic Pearson product-moment correlation coefficient:

ρω (X ,Y) =
Covω (X ,Y)

√
Covω (X ,X)Covω (Y ,Y)

=
Covω (X ,Y)

√
Varω (X)Varω (Y)

(29)

Where Covω (X ,Y) is the weighted covariance, and Varω (X) =
Covω (X ,X) is the weighted variance.

Weighted Pearson correlation, just like regular Pearson correla-
tion, is in the range of [−1;+1], and can be used as a dissimilarity
function either via 1−ρω or via 1−ρ2ω . The key difference between
these two is that in the latter, a perfect negative correlation (ρ=−1)
also yields a distance of 0, which may be sometimes desirable.

Pearson correlation is not generally a metric distance. This is
easy to see in particular as it obviously is not defined when a vector
has variance 0.2 However, if the vectors are not constant and are

2We could define correlationwith a constant to be 0, but it this is not always satisfactory.
But what is then the correlation of two constant variables? For the purpose of obtaining
a metric distance, we would need to define the correlation of two constants as 1 if they

standardized to zero mean
∑
i xi = 0 and unit variance

∑
i x

2
i = 1,

the formula simplifies to ρ(X ,Y) = Cov(X ,Y). This standardization
does not change correlation, but with this preconditions it turns
out to be a variant of Euclidean distance:

dEuclidean(x ,y) =
√∑

i (xi − yi)
2 =

√∑
i x

2
i +

∑
i y

2
i − 2

∑
i xi · yi

=
√
2n − 2

∑
i xi · yi =

√
2n(1 − ρ(X ,Y))

where the last line requires standardized data:
∑
i x

2
i = 1 =

∑
i y

2
i .

Therefore, if we disallow constant vectors, (weighted-) Pearson
correlation can be converted into a metric by using

dPearson(x ,y) =
√
1 − ρω (X ,Y)

For data mining, it will often be more efficient to store the standard-
ized vectors, and use Euclidean distance. It is worth emphasizing
that with the transformed data, we can efficiently find the most
correlated vectors using various data indexes such as k-d-trees and
R-trees. Doing so requires an additional rescaled copy of the data,
but allows using the simpler Euclidean distance during mining.

In this particular scenario, we can assume the vectors to be
short enough for the two-pass algorithms; so while the incremental
method can be used, it probably only offers no benefits here. When
processing fewer, but much longer vectors such as time series, the
new method becomes more interesting, in particular, when we look
at live streaming time series such as sensor or stock market data.
Preprocessing the data in two passes is then no longer possible, and
we need to be able to update Pearson correlation on the fly.

For each sensor, we maintain the sum X (or the average x̂), and
pairwise sum of squared deviationsXY for any two sensorsX andY .
We can incrementally update the statistics to maintain correlation
information. The proposed approach does not require keeping the
entire time series in memory and can be updated easily, while also
offering good numerical behavior. The textbook approach based on
E[X ·Y] − E[X]·E[Y] also does not require to keep the entire series
in memory, but is numerically problematic for non-central data.

For the actual use on sensors, it may also be interesting to “age”
the historic data, and put more weight on new data as it arrives.
We will discuss this in the following subsection.

4.2 Exponentially Weighted Moving Correlation
For an exponentially weighted moving average (EWMA), we weight
each point in a series i=1, . . . ,n with an exponentially decreasing
weightωi =α · (1−α)n−i . For an infinite series, the total weight then
is approximately 1. Because this weighting scheme can be defined
with the recurrence ωi−1= (1−α) · ωi , we can efficiently compute
this by applying the discount factor 1−α each step to the old data
sums (i.e., ΩA, XA, XXA, etc.; but not to averages like x̂A), and add
the new data always with weight α , rather than recomputing all
weights when we add a new data point. To use this scheme with our
approach, we can either use fixed weights ΩA=1 − α and ΩB =α ,
or we simply apply the discounting factor to the current weight of
the old data prior to executing the update step, which handles the
beginning of the series better.

We can choose α using different formulations, for example, the
half-life time t : α = 1 − exp(log(12)/t), where t is the number of

are the same constant to satisfy reflexivity. Undefined correlation may often be the
more appropriate answer.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Erich Schubert and Michael Gertz

iterations until the weight of a point has decreased to half the
initial weight. For example, if we set t =4, we get α ≈0.159 which
subsequently decreases to 0.134, 0.113, 0.095 and 0.080 – so after 4
iterations, the initial weight has reduced to half.

SigniTrend [22] and SPOTHOT [23] apply EWMA and expo-
nentially weighted moving variance (EWMVar) to analyze the fre-
quency of word patterns on streaming data. With our weighted
covariance formulation, we can analogously define exponentially
weighting moving correlation (EWMCorr).

This analysis is interesting on streaming data to monitor changes
in correlation of variables, for example, stock market charts. A
sudden departure from a correlation, or the sudden increase in
correlation of variables, can indicate important changes in the
market. With our approach, we can furthermore incorporate, e.g.,
the trading volume as weights into our analysis. Let t̂ be a long-
running average volume of the stock, then we can instead choose
α ′= 1 − (1 − α)t/t̂ to base the learning rate on “average” trading
days rather than calendar days, and the moving average will react
slower to low-volume trades and faster if we see an increased
trading volume. We show experiments with this weighting scheme
in Section 5.2.

4.3 Parallel Computation of Covariance
Matrixes for Gaussian Mixture Modeling

We can now use the equations from Section 3.1 to parallelize Gauss-
ian Mixture Modeling (GMM) without using two passes over the
data, without losing numerical precision. In clustering, we cannot
assume that all clusters are close to 0, but rather we must assume
that E[X]2≪E[X 2] if we want well-separated clusters. Therefore,
numerical precision is very likely to suffer.

For example, Apache Spark MLLib 2.2.1 uses the numerically
problematic textbook approach in its GMM code. Since version 0.6.0,
ELKI [1] uses the numerically stable single-pass method discussed
here, prior to that it used the two-pass algorithm. None of the imple-
mentations we investigated would make use of AVX vectorization.

To compute the covariance matrix, we need to compute the
mean x̂ for each variable X , and the sum of squared deviations
XY =

∑
i ωi (xi −x̂)(yi −ŷ) for all pairs of variablesX andY . Because

of symmetry, it is sufficient to track an upper (or lower) triangular
matrix (including the diagonal), and the sum of weights Ω=

∑
i ωi

will be the same for the entire matrix, so we only need to update
this once (unless we also need to support missing values).

To add a data point to our summary, we can use this simplified
update step derived from Equation 24:

ΩA∪{i } ←ΩA + ωi
}
Upd. weights

∀X δx ←xi − x̂A

∀X x̂A∪{i } ← x̂A +
ωi

ΩA∪{i }
· δx

}
Upd. means

∀Y δ ′y ←yi − ŷA∪{i }

∀X ,Y XYA∪{i } ←XYA + ωi · δx · δ
′
y

}
Upd. deviations

Because ωi/ΩA∪{i } is shared across all variables, it is beneficial to
compute this factor only once, and the pipelining effects observed
in Figure 2 do not apply to the multivariate case.

For parallelization, we can compute XYA and ΩA on separate
partitions A, for example, using multiple registers, multiple cores,

Input data

AVX register

AVX accumulators

Partition sums Squared deviations

Reduction

X XXOutput

Figure 3: Data flow in AVX computation: all operations are
performed 4× parallel (with AVX-512: 8×), then for the final
output, the four partitions are combined in afinal step (some
arrowsX→XX in the reduction are omitted for readability).

or multiple nodes of a cluster. One can then merge the results using
Equation 24 using the following merge step:

ΩAB ←ΩA + ΩB
}
Upd. weights

∀X δx ← x̂B − x̂A

∀X x̂AB ← x̂A +
ΩB
ΩAB
· δx

}
Upd. means

∀Y δ ′y ← ŷB − ŷAB

∀X ,Y XYAB ←XYA + XYB + ΩB · δx · δ
′
y

}
Upd. dev.

From the resulting XY , one can obtain (co-)variance using the
equation Cov(X ,Y) = XY/Ω at any time.

4.4 Vectorization
The key idea for vectorization is to use SIMD (single instruction,
multiple data) instructions to compute several partitions in parallel
and then merge the results. One can employ different strategies:
• Using SIMD instructions such as AVX one can process 4 double-
precision floating point numbers at once using 4 parallel accu-
mulators (with AVX-512, we will get a width of 8 doubles). The
resulting partitions can then be reduced to a single result at the
end. This is illustrated in Figure 3.
• Multiple registers can be used to get a larger width. AVX pro-
vides 16 registers (AVX-512 has 32), but one also need some
register for intermediate values. Using 4 × 2 registers for mean
and variance leaves half of the registers available, but allows
processing 16 partitions in parallel.
• Micro-batches of, e.g., 16 or 32 values depending on memory
cache line size can be processed using the two-pass approach
using SIMD instructions. These results are then aggregated as in
the first approach described, but we need to run this approach
less often, and may get a slight improvement in precision from
the two-pass stage.
In our experiments below, we usually observe a slight increase

in precision using these approaches. Given that we use 256 bits
instead of 64 bits to perform our computations until we merge these
in the very end, it is not surprising that we see a slight increase
in numerical precision compared to the non-vectorized versions.
Furthermore, this approach uses fused-multiply-add (FMA, a ·b+c)
operations that internally can use higher precision.

Numerically Stable Parallel Computation of (Co-)Variance SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

For integration into a scientific database, the AVX approach,
however, means a considerable increase in effort: these instructions
require that memory is aligned on 32 byte boundaries, and that val-
ues are stored consecutively in memory (e.g., in a column-oriented
storage). On a row-oriented storage—which is often more appropri-
ate for dense vector data in data mining—the data reorganization
likely is too expensive to make the AVX approach worthwhile.

This kind of computation could also be used on a GPU. However,
not all GPUs may provide full double-precision accuracy. Nvidia
compute capability 1.2 and below, for example, only include single-
precision, and does not guarantee IEEE 754 accuracy for all op-
erations [29]. With modern compute capability 2.0, the accuracy
should be comparable. However, in many cases the cost to transfer
the data to the GPU may be non-negligible for such a low-cost
computation, so that GPU approaches will likely only be beneficial
when the data already is stored in the GPU memory.

4.5 Distributed Parallelization
When processing very large data sets, we can also use the same idea
to distribute the computation onto multiple nodes. Each of these
nodes can independently run a two-pass or the online algorithm to
compute the statistics. Only a minimum amount of communication
is necessary to transmit the summaries (one tuple of the form
(VWP ,VP ,WP ,ΩP) for each partition P) to the coordination node,
where the results can be easily combined. Alternatively, summaries
can also be combined in a tree structure as recommended by Chan
et al. [4], and possibly by multiple workers.

Only when we had a column partitioning of the data (where
columns reside on different nodes), we would need to stream the
data from one node to another to be able to compute correlations.
To the best of our knowledge, column store systems will prefer
horizontal partitioning across nodes, and vertical partitioning inside.
However, when joining tables from different nodes, such situations
can nevertheless arise. The online algorithm is still applicable then,
but the join itself will likely require the data from one node to be
streamed to the other.

4.6 Further Improvements to Accuracy
Neither our approach, nor the two-pass algorithm, are safe from
numerical problems, just like any other floating point computation.
In fact, a data set with just three points is enough to cause problems:
on 3, 10100, −10100 we will already fail to compute the correct mean
(which obviously should be 1, but we will usually get a result of 0).

If additional precision is needed, we can equip all our accumu-
lators (each Ω, X , XY) with additional overflow registers and use
Kahan summation [10] or the adaptive Shewchuk approach [24]
to compensate for lost digits with additional accumulators. A sim-
ilar modification can be done to the textbook and the two-pass
algorithm to improve precision.

Furthermore, we can employ a trial mean to improve numerical
precision, as used by Neely [15]. In this approach, we compute the
deviation from a guessed value; and if our guess is good enough,
this can improve numerical precision. For example, we can compute
the mean using µ = η+ 1

n
∑n
i=1(xi − η), which for η = 0 gives the

usual mean. If η=µ, the last term will sum to 0 in exact math, but
due to floating point rounding this will often not hold in practice. If

η is close to µ, this will improve numerical precision. Chan et al. [5]
recommend to “shift the data as well as possible”. This can be in
particular beneficial if we have pre-sorted data, where numerical
precision is more problematic than on random data, and can guess
η for example by using the median.

In our experiments shown in the next section, we found that we
can usually improve precision by about four decimals, and with
most algorithms we get close to the double precision limit. From
a statistical point of view, this extra precision may, however, be
questionable, because our input sample is finite. The relative stan-
dard error of the variance is ≈

√
2/n [2], so to warrant a precision

of d digits, we should use about 2 · 102·d samples, twice as many
as to estimate the mean. Thus, except for the textbook approach,
any of the algorithms we evaluated is precise enough unless our
input data as in the example above has a very high dynamic range,
causing a loss of precision already when computing the sum.

5 EXPERIMENTS
In this section, we first study numeric precision and runtime of dif-
ferent methods for computing the mean and variance in Section 5.1.
In particular, we demonstrate that the popular textbook equation
E[X 2]−E[X]2 should not be used for computing the variance. Not
only has this version a low precision under certain – not uncom-
mon – conditions, but there also exist alternatives with much better
precision at little additional runtime cost.

In the second experiment, in Section 5.2, we apply the weighted
online algorithm to stock charts, where the weights are chosen
based on the current trading volume.

Next, we benchmark different implementations of clustering
with Gaussian Mixture Modeling (GMM). Again, we observe nu-
merical problems with the textbook covariance E[X ·Y]−E[X]·E[Y],
and suggest to not use it. Instead, either the two-pass algorithm
should be used, or an online algorithm as introduced in Section 4.3.
We demonstrate that a very popular distributed machine learning
toolkit suffers from these numerical issues, and should be updated
to use the equations introduced in this paper instead.

5.1 Runtime and Accuracy
We evaluated different approaches on synthetic data of 100 million
samples generated from a normal distribution with fixed variance
σ 2=1 and varying mean µ ∈ {10−4 . . . 1010}. For obvious reasons,
the ratio σ 2/µ is of interest. We considered five permutations of the
data: a fixed random order, ascending, descending, ascending by
the deviation from µ and descending by the deviation from µ. For
each method, we only use the worst ordering for evaluation. Sorted
order caused substantially larger errors for most methods, as this
causes many of the small values to be lost due to rounding errors.
Each experiment was repeated for 11 different random seeds.
We compare various methods that can be grouped as follows:
(1) Incremental algorithms, including the Textbook approach using

E[X 2]−E[X]2 which can, for example, be found in the Boost C++
library as tag::lazy_variance. The approaches by Welford,
also in the variant of Knuth, and the versions of Van Reeken,
Hanson, West, and Youngs and Cramer. Boost also includes a
variation of Hanson as tag::variance. For Cotton we include
both the literal version and a version with the fix. As expected,

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Erich Schubert and Michael Gertz

Table 2: Runtime and precision of different equations to computing the mean and variance of 100.000.000 doubles
using the GCC 7 compiler and an Intel Core i7-7560U @2.4GHz CPU. Aggregate over 11 runs, worst data ordering only.

Method Variant Runtime (s) Precision (decimal digits)
Mean Min Mean Median Max Best Mean Median Worst
Boost double 752.25 752.47 752.37 753.05 12.605 10.574 10.539 8.222
Hanson double 752.23 752.44 752.35 752.88 12.605 10.574 10.539 8.222
Van Reeken double 919.37 919.62 919.52 920.20 12.848 10.715 10.746 8.569
Welford double 920.78 922.86 922.96 923.64 12.726 10.834 10.828 8.529
Textbook double 168.14 168.28 168.25 168.54 14.298 11.376 11.571 8.680
Van Reeken (Minibatch) double 91.88 92.20 92.18 92.68 13.388 11.541 11.588 9.143
Two-pass (Neely) double 336.75 337.02 336.93 337.62 17.866 14.490 16.012 8.748
Van Reeken AVX 86.87 87.11 87.11 87.30 13.874 11.450 11.478 9.598
Textbook AVX 45.22 45.74 45.50 47.15 14.525 11.949 12.545 9.526
Van Reeken AVX×8 44.27 44.86 44.57 46.29 14.732 12.417 12.582 10.023
Textbook AVX×8 46.67 47.23 46.98 48.66 15.535 13.107 13.644 10.477
Textbook Kahan 668.68 668.90 668.75 669.77 17.866 16.441 16.333 15.835
Textbook Shewchuk 1109.61 1343.99 1134.27 2485.95 17.866 16.441 16.333 15.835
Van Reeken Kahan 1112.33 1112.98 1113.01 1115.08 17.866 16.501 16.374 15.643
Variance
Cotton (literal) double 1256.43 1257.34 1257.10 1260.67 -0.076 -3.949 -3.257 -11.135
Cotton (fixed) double 921.88 924.09 924.01 927.39 13.010 3.415 5.035 -11.127
Textbook double 168.85 168.97 168.93 169.22 12.848 4.086 6.150 -11.153
Van Reeken double 943.66 944.55 944.29 946.14 13.224 7.441 8.787 -0.963
West double 933.17 934.42 934.42 935.67 13.224 7.441 8.787 -0.963
Welford / Knuth double 929.17 929.97 929.93 931.18 13.224 7.441 8.787 -0.963
Boost double 940.36 943.00 942.90 945.25 12.432 7.793 8.700 -0.451
Hanson double 766.45 766.71 766.58 767.37 13.370 7.868 8.700 -0.451
Welford double 943.51 951.54 952.72 955.09 13.064 8.072 9.019 0.479
Youngs & Cramer double 212.20 212.53 212.49 213.31 12.840 8.284 9.588 0.454
Proposed Minibatch double 202.50 202.78 202.73 204.33 14.256 9.299 10.184 0.805
Two-pass double 336.78 337.02 336.93 337.38 14.135 10.168 12.383 1.045
Two-pass (Neely) double 337.15 337.41 337.32 338.08 14.135 12.372 12.485 10.042
Textbook AVX 48.61 49.04 48.86 50.14 5.932 -0.469 1.393 -12.599
Welford / Knuth AVX 94.75 95.12 95.17 95.44 13.815 8.287 9.622 -0.805
Youngs & Cramer AVX 65.40 66.30 66.16 67.35 14.301 8.838 10.187 0.516
Welford / Knuth AVX×4 50.93 51.47 51.22 52.83 14.041 8.892 11.306 -0.547
Youngs & Cramer AVX×4 49.82 52.88 52.98 54.85 14.353 9.524 10.600 0.805
Welford / Knuth (Minibatch) AVX 54.47 55.32 55.01 62.55 12.284 8.263 10.490 -0.547
Youngs & Cramer (Minibatch) AVX 55.18 56.52 56.60 57.36 13.268 8.948 10.254 0.805
Two-pass AVX 91.52 92.42 92.15 94.85 13.685 10.817 13.122 1.051
Two-pass AVX×4 91.04 92.17 91.74 95.31 14.239 11.907 13.595 1.108
Two-pass (Neely) AVX 96.88 97.69 97.36 99.81 13.685 12.851 13.123 10.365
Two-pass (Neely) AVX×4 89.07 90.47 89.75 95.90 14.375 13.240 13.591 10.707
Textbook Kahan 668.70 668.89 668.82 669.27 15.955 8.653 10.450 -4.430
Youngs & Cramer Kahan 692.21 692.44 692.39 692.97 15.955 14.538 15.955 9.570
Two-pass Kahan 1337.38 1337.77 1337.54 1338.58 15.955 15.630 15.955 12.006
Two-pass Shewchuk 2174.92 4000.18 3741.58 6601.13 15.955 15.630 15.955 12.006
Two-pass (Neely) Kahan 1337.37 1337.74 1337.56 1338.75 15.955 15.941 15.955 15.654

Numerically Stable Parallel Computation of (Co-)Variance SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

10-25

10-20

10-15

10-10

10-5

100

105

10-4 10-2 100 102 104 106 108 1010

Er
ro

r /
 M

ea
n

Mean / Standard Deviation

Textbook: E[X2]-E[X]2

Two-pass: E[(X-E[X])2]
Hanson

West
Youngs-Cramer

Two-pass: Neely
Double precision

(a) Standard deviation

10-25

10-20

10-15

10-10

10-5

100

105

10-4 10-2 100 102 104 106 108 1010

Er
ro

r /
 M

ea
n

Mean / Standard Deviation

Textbook: E[X2]-E[X]2

Two-pass: E[(X-E[X])2]
Hanson

Van Reeken
Welford

Welford/Knuth

Cotton (literal)
Cotton (fixed)

Double precision

(b) Standard deviation, methods of historical interest

10-25

10-20

10-15

10-10

10-5

100

105

10-4 10-2 100 102 104 106 108 1010

Er
ro

r /
 M

ea
n

Mean / Standard Deviation

Textbook: E[X2]-E[X]2

Textbook + Kahan

Two-pass: E[(X-E[X])2]
Two-pass + Kahan

Two-pass + Shewchuck

Youngs Cramer + Kahan
Double precision

(c) Standard deviation, high-precision methods

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

10-4 10-2 100 102 104 106 108 1010

Er
ro

r /
 M

ea
n

Mean

Textbook Sum(X)/|X|
Welford

Hanson
Van Reeken

Van Reeken Batch
Two-pass: Neely

Double precision

(d) Mean
Figure 4: Estimation errors

this version is slower than the textbook version, but it is just as
instable.

(2) Algorithms requiring multiple passes, in particular the canon-
ical two-pass approach, also with Neely’s adjustment, and a
mini-batch version using the two-pass approach only on mini-
batches of 16 values at a time, then aggregating the results
incrementally with Equation 23 as explained in Section 4.4, but
without AVX.

(3) AVX vectorized versions from Section 4.4 of the incremental
algorithms of Welford / Knuth, and Youngs and Cramer. The
AVX×4 variant uses four registers and processes 16 partitions
in parallel. The partitions are in the end aggregated into a single
result using a binary tree of pairwise aggregations, similar to
Chan et al. [4].

(4) AVX vectorized versions of the two-pass algorithm.
(5) High precision versions using Kahan summation [10] or the

Shewchuk algorithm [24] for aggregation, but regular double
precision for multiplication and the mean.

To compute the reference values, we also used the Shewchuk al-
gorithm with two passes, but using simulated (slow) quadruple
precision floats, to compute the reference value accurate to a sig-
nificant with 112+1 bits (i.e., 34 decimal digits), which is sufficient
to evaluate the maximum 15.955 decimal digits of a double. Scores
larger than this are possible, because our input data also is only
double precision. All evaluated implementations use double preci-
sion internally (and a double approximation of the mean), and the
resulting rounding errors cause an additional error in the variance.

The Kahan and Shewchuk based versions use the high-precision
technique only in the accumulators, not for the other computations.

Table 2 gives the results of this experiment (minimum, maxi-
mum, mean, and the median-of-medians for each method). We first
evaluate the precision of themean, while the lower part of the table
evaluates the precision of the variance. The table is sorted by the
mean within each group. This experiment used 108 samples, so
the statistically meaningful precision will only be around 4 digits.
Furthermore, we must only treat the numbers as a rough indication
of which methods to prefer: The reported mean and median depend
very much on the choice of σ 2/µ, and on patterns in the input data,
and will not translate to a guaranteed improvement on actual data.
In fact, on many real data sets with a variance much larger than the
mean, even the textbook algorithm will give near-optimal precision.
This experiment yields a number of interesting observations:
• The textbook algorithm is the fastest, twice as fast as the two-
pass algorithm, but it also is by far the least accurate.
• The two-pass algorithm, in particular with Neely’s modification,
offers the highest accuracy, but it may not be applicable in all
scenarios because of the second pass needed. Performance-wise,
the two-pass algorithm is surprisingly competitive, supposedly
because it does not involve slow division operations for each
data point.
• Online algorithms vary surprisingly a lot both in precision and
runtime. The better approaches of Hanson,Welford, and Youngs
and Cramer will typically give twice as many digits of precision
as the textbook approach.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Erich Schubert and Michael Gertz

• Youngs and Cramer’s has a surprising performance benefit
over the alternatives, and clearly is the go-to method for a true
streaming approach. As explained in Section 3.2, we attribute
this to pipelining benefits of modern CPUs.
• If we can afford to buffer some data points, the proposed mini-
batch algorithm improves both runtime and precision compared
to the best streaming approach.
• Parallelization with AVX yields speedups of a factor of 2 to 4,
but requires much more implementation efforts, for example,
because of the required memory alignment. When data is not
already in a consecutive array of doubles, they probably are not
beneficial to use.
• The parallelized AVX approaches also yield a small gain in pre-
cision, because they postpone merging the individual partitions
to the end, and keep 4-16 values in parallel.
• The approaches using Kahan and Shewchuk compensation dur-
ing aggregation are accurate to the limits of double precision,
except for the textbook algorithm (as we implement only a high-
precision aggregation, not multiplication). However, they are
also 2 to 3 times slower, and the additional gain in accuracy, as
explained in Section 4.6, is supposedly less than the statistical
uncertainty of the data overall.

With respect to numeric precisions, our results experimentally con-
firm the findings byWest [28] and Youngs and Cramer [30]. Figure 4
visualizes the relative error of the different approaches dependant
on the ratio of standard deviation to the mean. Lines are offset
slightly on the x axis to reduce overlap, all x values are exactly
powers of 10. As long as the standard deviation is much larger than
the mean, none of the methods has problems, and we can estimate
variance accurately to about 12 decimal digits (which supposedly
is due to the unavoidable square in the variance definition). As we
decrease the variance, we have fewer and fewer significant digits
in our deviation from the mean, the black dashed line indicates a
theoretical limit due to double precision. While we can get preci-
sion much below this line using, e.g., Neely’s adjustment, Kahan
compensation or Shewchuk summation, precision below this line
is not very well founded. At the right end, when our standard de-
viation is about 10−10, our input random numbers will only differ
from the mean with very few bits in the significand. The important
area of the plot is in the center, where the standard deviation is
2–4 orders of magnitude smaller than the mean. In this range, the
textbook method using E[X 2]−E[X]2 will give us results that are
incorrect by a substantial factor. For example, if we have just two
points, 1±10−7 (with the true variance 10−14), E[X 2] will be about
1+1.021405·10−14, because of floating point errors. After subtracting
E[X]2=1, we get an estimated variance with only two significant
digits of precision. At around 10−11, we get E[X 2] = E[X]2 with
respect to double precision, and the variance computed by the text-
book approach is always 0. Chan et al. [4, 5] give theoretical error
bounds for different approaches that can help explain the shape of
the curves that we observe in this experiment.

In conclusion of this experiment, we suggest to use the two-pass
algorithm with Neely’s adjustment when applicable, and other-
wise resort to a mini-batch algorithm or the variant of Youngs and
Cramer for unweighted data. For weighted data, Equation 22 may
offer similar pipelining benefits over Equation 21, but supposedly

Figure 5: Google stock during the “one day rally” 2015.
Our volume-weighted EWMA variant (dashed lines) reacts
quicker due to the increased trading volume, while it does
not differ much from a regular EWMA model (dotted lines)
during the average trading before and after the rally. Bounds
give the stock mean ± two standard deviations, similar to
Bollinger Bands but with exponentially decreasing weight.

Figure 6: August 2015 stockmarket selloff.We observe an in-
crease in correlation of Tech stocks at the positive Q2 quar-
terly reports, and during the overall stockmarket selloffAu-
gust 18-25 and the subsequent days of market nervousness.

with a smaller benefit because of the additional processing needed
for the weights. If possible, a AVX vectorization is worth exploring,
but the integration into existing scientific databases may be difficult
because of memory alignment and data layout.

5.2 Stock Market Analysis
We applied the weighting discussed at the end of Section 4.2 to daily
stock market data from four technology companies. We weight data
volume such that it has a half-life time of three average trading days.
In Figure 5, we can see this weighting scheme in effect. During the
one-day rally following Google’s 2015 Q2 quarterly profit report,
the stock value increased by 25%. During this period, we see a much
increased trading volume, and because of this our approach reacts
faster than the traditional exponentially weighted moving average.

In Figure 6, we study the correlation of stocks during the August
2015 stock market selloff that peaked on Friday, August 21 and
Monday, August 24. On Monday, international stocks followed
suit in China (-8%), India (-6%), and Europe (-3%). The following
days, we observe a strong correlation of all stocks, due to this

Numerically Stable Parallel Computation of (Co-)Variance SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

overall market trend. This shows that it is, unfortunately, not that
trivial to identify correlations in stocks that are not caused by
general market developments, and such an analysis will require
more careful decorrelation to be useful. In the beginning of the
time series, we can see Google’s one day rally again, and an overall
high correlation in the tech stocks after their positive quarterly
reports. Inbetween, we can see a moderate negative correlation of
Apple with the other three stocks, a strong correlation between
Google and Facebook, and a moderate positive correlation of these
two with Microsoft. During this time, Apple already exhibits a
negative development, while the other two continue to exhibit a
positive development. Another non-trivial part of such an analysis
is handling the time lag: by nature, rolling averages have to lag
the data substantially. So while our approach enables interesting –
and online – analysis of such data, it is far from being ready to be
deployed without further studies.

5.3 Gaussian Mixture Modeling
We studied the quality and runtime of Gaussian Mixture Modeling
using the popular Expectation-Maximization (EM) algorithm. We
chose a very simple scenario: two Gaussian clusters in R3, with
50.000 points each, standard deviations 4

3 , 1, and
3
4 , and a random

rotation to have a unique covariance matrix each. We vary only
the placement of the two clusters by shifting the cluster centers
diagonally away from the mean in order to provoke numerical
instabilities. For a cluster center distance of < 2, the clusters will
still overlap with a non-trivial amount, but at a distance of > 10
this data set is supposedly trivial to cluster, because the separation
of the clusters is much larger than their diameters. We run each
algorithm 11 times, and report the averages in the following.

We evaluate four different implementations here: the R “mclust”
package, which probably is the most widely known implementa-
tion. The core of this package is written in Fortran, and it uses
a two-pass algorithm. The Python “sklearn” version uses numpy,
and also a two-pass algorithm. To make results more compara-
ble, we disabled regularization and used random initialization as
with the other implementations. Spark ML is of interest, because
it uses the numerically problematic textbook approach to allow
parallel processing. We run it single-core, and with all 8 threads
supported by our i7-3770 CPU. ELKI uses a Welford-based incre-
mental approach, closely related to Section 4.3. We add additional
implementations to ELKI 0.7.1 [21] that use the two-pass, respec-
tively the textbook algorithms. The modular Java architecture of
ELKI made it easy to add the variants, keeping the remainder of
the code unchanged. This way we can study the differences in iso-
lation, which is a best-practise for benchmarking algorithms, and
not implementations [13].

We evaluate the quality using two different metrics: Figure 7a
evaluates the average log-likelihood of the Gaussian model, which
is a goodness-of-fit measure internally used by the algorithm itself.
The sudden changes we see in most curves are due to some of the
11 samples failing to find the best solution, but we can also see a
gradual degradation in the Spark and sklearn implementations. In
Figure 7b we instead evaluate the difference between the covariance
matrix found by the algorithm, and the “true” covariance matrix
computed during data generation with a high-precision method.

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

 0.1 1 10 100 1000 10000 100000 1x106 1x107 1x108

A
ve

ra
ge

 L
og

-L
ik

el
ih

oo
d

Relative distance of clusters

R Mclust, two-pass
Spark single-core, textbook
Spark multi-core, textbook

sklearn, two-pass
ELKI, textbook
ELKI, two-pass
ELKI, Welford

(a) Log-likelihood goodness of fit of the model

10-20

10-15

10-10

10-5

100

105

1010

1015

1020

 0.1 1 10 100 1000 10000 100000 1x106 1x107 1x108

A
ve

ra
ge

 E
rr

or

Relative distance of clusters

R Mclust, two-pass
Spark single-core, textbook
Spark multi-core, textbook

sklearn, two-pass
ELKI, textbook
ELKI, two-pass
ELKI, Welford

(b) Deviation from exact covariance matrix

 0

 5

 10

 15

 20

 0.1 1 10 100 1000 10000 100000 1x106 1x107 1x108

A
ve

ra
ge

 R
un

ti
m

e
[s

]

Relative distance of clusters

R Mclust, two-pass
Spark single-core, textbook
Spark multi-core, textbook

sklearn, two-pass
ELKI, textbook
ELKI, two-pass
ELKI, Welford

(c) Runtime of Gaussian Mixture Modeling
Figure 7: Numerical issues in Gaussian Mixture Modeling

The results here are similar. Finally, in Figure 7c we compare the
run-time of the different implementations (we tried our best to
choose the same convergence thresholds, but nevertheless these
numbers can only serve as a rough indicator.)

As long as the clusters are close to each other (with a distance
of <5), all implementations work well. After this, we can see the
three textbook algorithms lose precision in the covariance matrix
(Figure 7b) quickly. It is not obvious why the ELKI implementation
nevertheless has a few digits of precision more than the Spark ver-
sion. The loss in precision is approximately linear in log-log-space,
as expected. The Welford-based approach also loses some precision,
but at a much slower rate, while the two-pass implementations of
R and ELKI remain close to the precision limit.

The numpy implementation exhibits erradic behavior once the
clusters become too separated. We do not have an explanation
for this behaviour. We can see the runtime increase substantially
after a separation of >2, at >500 the numerical precision suddenly

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Erich Schubert and Michael Gertz

drops (likely because the method often no longer finding the correct
separation), and at 5·106 the implementation begins to fail with an
exception. At this extreme separation, we do observe hickups in
the ELKI implementations, too.

We can see two groups—possibly by chance—that exhibit similar
runtime performance in Figure 7c, with the ELKI and numpy imple-
mentations outperforming the R and Spark implementations usually
by a factor of 2–3. The only multi-core implementation (Spark) only
reduces the runtime by a surprisingly small bit. Initially, the text-
book implementation in ELKI is the fastest method, and in this
range also with neglibile loss in accuracy. But the additional cost of
the two-pass and Welford approaches is probably worth the gain
in precision in other situations.

In conclusion of this experiment, we note that (i) the textbook
approach should only be used when clusters are very close to the
origin. At a distance of 10 standard deviations we already see a
numeric loss in the precision of the covariance matrix, so it is
supposedly not safe for clustering data sets with many clusters.
(ii) the two-pass algorithm is a safe choice, with the best precision,
and little performance overhead. (iii) for distributed systems such
as Spark, an incremental approach as discussed in Section 4.3 is
beneficial and will provide sufficient accuracy, while only requiring
a single pass over the data. But we may require extremely large
data sets, that no longer fit into the memory of a modern server,
for this to be beneficial.

6 CONCLUSIONS AND FUTUREWORK
While numerical stability has been a concern for a long time, we
found that modern tools such as the PostgreSQL database, scien-
tific databases such as RasDaMan, and the computation platform
Apache Spark still use numerically unstable computation methods,
for example, in GMM clustering. In closed-source software, we will
usually not even know which variant is used.3 Our findings agree
with earlier results by West [28]: if possible, the two-pass algorithm
often is a good choice, also because of its simplicity. Only when
we can visit data only once (such as in streaming data, or when we
desire to use exponentially weighted moving averages) or when it
is expensive to visit twice (e.g., because it is too large to keep in
memory, or residing in a distributed storage) then incremental algo-
rithms such as ours are beneficial. As seen in our experiments, it can
sometimes be beneficial to perform the division last as in Youngs
and Cramer’s [30] approach, if the division cannot be shared for
multiple variables. In this article, we provide optimized equations
to merge covariance information from multiple partitions in a nu-
merically reliable way, but that can be aggregated in a single-pass
over the data. Using these equations, we can improve numerical
precision of many methods with little additional computational
overhead. We also suggest AVX and GPU parallelization and mini-
batches to further improve precision and runtime.

Besides numerical stability and support for parallelization, our
approach also allows for different weighting schemes, making this
approach applicable for interesting analysis of correlation of times
series, using exponentially weighted correlation.

3A simple test that fails, e.g., on Microsoft SQL and HyPer is: SELECT VAR(x) FROM
(SELECT 1000000000 AS x UNION SELECT 1000000001 AS x) t.
PostgreSQL is correct for VAR_SAMP(x)= 1

2 but returns 0 for COVAR_SAMP(x,x).

REFERENCES
[1] E. Achtert, H.-P. Kriegel, E. Schubert, and A. Zimek. 2013. Interactive Data

Mining with 3D-Parallel-Coordinate-Trees. In Proc. SIGMOD. 1009–1012. https:
//doi.org/10.1145/2463676.2463696

[2] S. Ahn and J. A. Fessler. 2003. Standard errors of mean, variance, and standard
deviation estimators. Technical Report. EECS, University of Michigan.

[3] G. E. P. Box and J. S. Hunter. 1959. Condensed Calculations for Evolutionary
Operation Programs. Technometrics 1, 1 (1959), 77–95.

[4] T. F. Chan, G. H. Golub, and R. J. LeVeque. 1982. Updating Formulae and
a Pairwise Algorithm for Computing Sample Variances. In COMPSTAT 1982,
H. Caussinus, P. Ettinger, and R. Tomassone (Eds.). 30–41. https://doi.org/10.
1007/978-3-642-51461-6_3

[5] T. F. Chan, G. H. Golub, and R. J. LeVeque. 1983. Algorithms for Computing the
Sample Variance: Analysis and Recommendations. The American Statistician 37,
3 (1983), 242–247. https://doi.org/10.2307/2683386

[6] T. F. Chan and J. G. Lewis. 1979. Computing Standard Deviations: Accuracy.
Commun. ACM 22, 9 (1979), 526–531. https://doi.org/10.1145/359146.359152

[7] I. W. Cotton. 1975. Remark on Stably Updating Mean and Standard Deviation of
Data. Commun. ACM 18, 8 (1975), 458. https://doi.org/10.1145/360933.360981

[8] A. Fog. 2017. Instruction tables: Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs. Technical Report.
Copenhagen University College of Engineering.

[9] R. J. Hanson. 1975. Stably Updating Mean and Standard Deviation of Data.
Commun. ACM 18, 1 (1975), 57–58. https://doi.org/10.1145/360569.360662

[10] W. Kahan. 1965. Pracniques: further remarks on reducing truncation errors.
Commun. ACM 8, 1 (1965), 40. https://doi.org/10.1145/363707.363723

[11] N. Kamat and A. Nandi. 2016. A Closer Look at Variance Implementations In
Modern Database Systems. SIGMOD Record 45, 4 (2016), 28–33. https://doi.org/
10.1145/3092931.3092936

[12] D. E. Knuth. 1981. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley.

[13] H.-P. Kriegel, E. Schubert, and A. Zimek. 2017. The (black) art of runtime eval-
uation: Are we comparing algorithms or implementations? KAIS 52, 2 (2017),
341–378. https://doi.org/10.1007/s10115-016-1004-2

[14] R. F. Ling. 1974. Comparison of Several Algorithms for Computing Sample
Means and Variances. J. Amer. Statist. Assoc. 69, 348 (1974), 859–866. https:
//doi.org/10.2307/2286154

[15] P. M. Neely. 1966. Comparison of Several Algorithms for Computation of Means,
Standard Deviations and Correlation Coefficients. Commun. ACM 9, 7 (1966),
496–499. https://doi.org/10.1145/365719.365958

[16] K. Pearson. 1901. On lines and planes of closest fit to systems of points in space.
Lond. Edinb. Dubl. Phil. Mag. 2, 6 (1901), 559–572.

[17] P. Pébay. 2008. Formulas for robust, one-pass parallel computation of covariances
and arbitrary-order statistical moments. Technical Report SAND2008-6212. Sandia
National Laboratories.

[18] B. E. Rodden. 1967. Error-free methods for statistical computations. Commun.
ACM 10, 3 (1967), 179–180. https://doi.org/10.1145/363162.363205

[19] J. L. Rodgers and W. A. Nicewander. 1988. Thirteen Ways to Look at the Correla-
tion Coefficient. The American Statistician 42, 1 (1988), 59–66.

[20] E. Schubert. 2013. Generalized and Efficient Outlier Detection for Spatial, Temporal,
and High-Dimensional Data Mining. Ph.D. Dissertation. Ludwig-Maximilians-
Universität München, Munich, Germany.

[21] E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid, and A. Zimek. 2015. A
Framework for Clustering Uncertain Data. Proc. VLDB Endowment 8, 12 (2015),
1976–1979. https://doi.org/10.14778/2824032.2824115

[22] E. Schubert, M. Weiler, and H.-P. Kriegel. 2014. SigniTrend: Scalable Detection of
Emerging Topics in Textual Streams by Hashed Significance Thresholds. In Proc.
SIGKDD. 871–880. https://doi.org/10.1145/2623330.2623740

[23] E. Schubert, M. Weiler, and H.-P. Kriegel. 2016. SPOTHOT: Scalable Detection of
Geo-spatial Events in Large Textual Streams. In Proc. SSDBM. https://doi.org/10.
1145/2949689.2949699

[24] J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (1997),
305–368. https://doi.org/10.1007/PL00009321

[25] T. B. Terriberry. 2008. Computing higher-order moments online. (2008). Technical
Note, http://people.xiph.org/~tterribe/notes/homs.html.

[26] A. J. Van Reeken. 1968. Letters to the editor: Dealing with Neely’s algorithms.
Commun. ACM 11, 3 (1968), 149–150. https://doi.org/10.1145/362929.362961

[27] B. P. Welford. 1962. Note on a Method for Calculating Corrected Sums of Squares
and Products. Technometrics 4, 3 (1962), 419–420. https://doi.org/10.2307/1266577

[28] D. H. D. West. 1979. Updating mean and variance estimates: an improved method.
Commun. ACM 22, 9 (1979), 532–535. https://doi.org/10.1145/359146.359153

[29] N. Whitehead and A. Fit-Florea. 2014. Precision and Performance: Floating Point
and IEEE 754 Compliance for NVIDIA GPUs. TB-06711-001_v6.5. NVIDIA.

[30] E. A. Youngs and E. M. Cramer. 1971. Some Results Relevant to Choice of Sum
and Sum-of-Product Algorithms. Technometrics 13, 3 (1971), 657–665. https:
//doi.org/10.1080/00401706.1971.10488826

https://doi.org/10.1145/2463676.2463696
https://doi.org/10.1145/2463676.2463696
https://doi.org/10.1007/978-3-642-51461-6_3
https://doi.org/10.1007/978-3-642-51461-6_3
https://doi.org/10.2307/2683386
https://doi.org/10.1145/359146.359152
https://doi.org/10.1145/360933.360981
https://doi.org/10.1145/360569.360662
https://doi.org/10.1145/363707.363723
https://doi.org/10.1145/3092931.3092936
https://doi.org/10.1145/3092931.3092936
https://doi.org/10.1007/s10115-016-1004-2
https://doi.org/10.2307/2286154
https://doi.org/10.2307/2286154
https://doi.org/10.1145/365719.365958
https://doi.org/10.1145/363162.363205
https://doi.org/10.14778/2824032.2824115
https://doi.org/10.1145/2623330.2623740
https://doi.org/10.1145/2949689.2949699
https://doi.org/10.1145/2949689.2949699
https://doi.org/10.1007/PL00009321
http://people.xiph.org/~tterribe/notes/homs.html
https://doi.org/10.1145/362929.362961
https://doi.org/10.2307/1266577
https://doi.org/10.1145/359146.359153
https://doi.org/10.1080/00401706.1971.10488826
https://doi.org/10.1080/00401706.1971.10488826

	Abstract
	1 Introduction
	2 Related Work
	3 Updateable Weighted (Co-)Variance
	3.1 Derivation of the General Form
	3.2 Optimizations and Specializations

	4 Usage Examples
	4.1 Weighted Pearson Correlation Coefficient
	4.2 Exponentially Weighted Moving Correlation
	4.3 Parallel Computation of Covariance Matrixes for Gaussian Mixture Modeling
	4.4 Vectorization
	4.5 Distributed Parallelization
	4.6 Further Improvements to Accuracy

	5 Experiments
	5.1 Runtime and Accuracy
	5.2 Stock Market Analysis
	5.3 Gaussian Mixture Modeling

	6 Conclusions and Future Work
	References

