
Numerically Stable Parallel
Computation of (Co-)Variance

Erich Schubert, Michael Gertz

30th Int. Conf. on Scientific and Statistical Database Management (SSDBM ’18)

July 9–11, 2018, Bozen-Bolzano, Italy

Ruprecht-Karls-Universität Heidelberg

{schubert,gertz}@informatik.uni-heidelberg.de

Variance & Covariance

Variance

Variance is a widely used summary statistic:

Var(X) = E

[
(X − E[X])

2
]

where E[_] denotes the expected value (e.g., arithmetic average).

Variance is the “expected squared deviation from the mean”.

Estimate the variance from a data sample (“two pass algorithm”):

1. compute µX =
1
n
∑

i xi

2. compute Var(X) =
1

n−1
∑

i(xi − µX)
2

(or with normalization factor
1
n)

From this we can, e.g., compute the standard deviation σX :=

√
Var(X).

This is the most common measure of spread.

1

Covariance

Covariance is similar, but for two variables:

Cov(X , Y) = E

[
(X − E[X])(Y − E[Y])

]
In particular, we have Cov(X ,X) = Var(X).

Used for example in:

I Pearson correlation:

ρX ,Y =

Cov(X , Y)√
Var(X) ·

√
Var(Y)

=

Cov(X , Y)

σX · σY
I Principal Component Analysis (PCA): decomposition of the covariance matrix

I Gaussian Mixture Modeling (“EM Clustering”) uses weighted (co-)variance

2

Variance

In most statistics textbooks, we will find this “textbook algorithm”:

Var(X) = E

[
(X − E[X])

2
]

= E[X 2
]− E[X]

2
(1)

This is:

I mathematically correct (proven, c.f. König–Huygens formula, Steiner translation)

I a�ractive (just one pass over the data, aggregate

∑
xi,
∑

x2i , N)

I numerically problematic with floating point computations

z Use Equation (1) only analytically, not with floating point data.

3

Variance

In most statistics textbooks, we will find this “textbook algorithm”:

Var(X) = E

[
(X − E[X])

2
]

= E[X 2
]− E[X]

2
(1)

This is:

I mathematically correct (proven, c.f. König–Huygens formula, Steiner translation)

I a�ractive (just one pass over the data, aggregate

∑
xi,
∑

x2i , N)

I numerically problematic with floating point computations

z Use Equation (1) only analytically, not with floating point data.

3

Catastrophic Cancellation

For illustration, assume floating points with four digits of precision:

E[X 2
]

− E[X]
2

= Var(X)

0 . 1 2 3 4 3 7 4

- 0 . 0 0 0 1 2 3 4

= 0 . 1 2 3 3 1 4 0

0 . 1 2 3 4 3 7 6 2

- 0 . 1 2 3 4 1 5 2 1

= 0 . 0 0 0 0 0 0 0 0

z If Var(X)� E[X]
2
, precision is good. But as E[X]

2 � 0, we lose numerical precision.

z We can first center our data, E[X] = 0: then Var(X) = E[(X − E[X])
2
] =

E[X]=0
E[X 2

]

But then we need two passes over the data set. For large data, this will be 2x slower.

z Algorithms for computing variance in a single-pass over the data set.

E.g., Welford [Wel62], Neely [Nee66], Rodden [Rod67], Van Reeken [Van68], Youngs and

Cramer [YC71], Ling [Lin74], Hanson [Han75], Co�on [Cot75], West [Wes79], Chan and

Lewis [CL79], Donald Knuth in TAoCP II [Knu81], Chan et al. [CGL82; CGL83], . . .

4

Catastrophic Cancellation

For illustration, assume floating points with four digits of precision:

E[X 2
]

− E[X]
2

= Var(X)

0 . 1 2 3 4 3 7 4

- 0 . 0 0 0 1 2 3 4

= 0 . 1 2 3 3 1 4 0

0 . 1 2 3 4 3 7 6 2

- 0 . 1 2 3 4 1 5 2 1

= 0 . 0 0 0 0 0 0 0 0

z If Var(X)� E[X]
2
, precision is good. But as E[X]

2 � 0, we lose numerical precision.

z We can first center our data, E[X] = 0: then Var(X) = E[(X − E[X])
2
] =

E[X]=0
E[X 2

]

But then we need two passes over the data set. For large data, this will be 2x slower.

z Algorithms for computing variance in a single-pass over the data set.

E.g., Welford [Wel62], Neely [Nee66], Rodden [Rod67], Van Reeken [Van68], Youngs and

Cramer [YC71], Ling [Lin74], Hanson [Han75], Co�on [Cot75], West [Wes79], Chan and

Lewis [CL79], Donald Knuth in TAoCP II [Knu81], Chan et al. [CGL82; CGL83], . . .

4

Solved Problem?

Already solved since the 70s?

I Incremental (add one sample) variants of variance mostly

I Still broken (or slow) in many SQL databases & toolkits!

Let us build a small unit test with two values, [µ− 1, µ + 1] and the mean µ:

Var(X) =
1

2−1

(
(µ− 1− µ)

2
+ (µ + 1− µ)

2
)

=
1

2−1

(
−12 + 12

)
= 2

Easy with µ = 0, but we will use µ = 100 000 000; and thus µ2 = 1016

Double precision: about 16 decimal digits (52+1 bit mantissa).

Single precision: about 6 decimal digits (23+1 bit mantissa).

z this breaks way too early for many use cases!

5

Solved Problem?

Already solved since the 70s?

I Incremental (add one sample) variants of variance mostly

I Still broken (or slow) in many SQL databases & toolkits!

PostgreSQL 9.6:

SELECT VAR_SAMP(x::float8), COVAR_SAMP(x,x)
FROM (SELECT 99999999 AS x UNION SELECT 100000001 AS x) AS x

0 7 0 7

5

Solved Problem?

Already solved since the 70s?

I Incremental (add one sample) variants of variance mostly

I Still broken (or slow) in many SQL databases & toolkits!

MySQL 5.6:

SELECT VAR_SAMP(X)
FROM (SELECT 99999999 AS X UNION SELECT 100000001 AS X) AS X

2 3 no covariance function?

MySQL is one of the few databases that implements a numerically stable approach.

5

Solved Problem?

Already solved since the 70s?

I Incremental (add one sample) variants of variance mostly

I Still broken (or slow) in many SQL databases & toolkits!

MS SQL Server 2017:

SELECT VAR(x)
FROM (SELECT 99999999 AS x UNION SELECT 100000001 AS x) AS x;

0 7 no covariance function?

5

Solved Problem?

Already solved since the 70s?

I Incremental (add one sample) variants of variance mostly

I Still broken (or slow) in many SQL databases & toolkits!

HyPer 0.6:

SELECT VAR_SAMP(x) FROM
(SELECT 99999999::REAL AS x UNION SELECT 100000001::REAL AS x)

0 7 no covariance function?

5

Contributions

In this paper, we revisit the 1970s results, and contribute:

I numerically stable

I weighted
I parallelizable
I (co-)variance

I based on the 1970s methods

I but with arbitrary weighting

I enabling partitioned computation (AVX, . . .)

I for covariance and variance

6

Contributions

In this paper, we revisit the 1970s results, and contribute:

I numerically stable

I weighted
I parallelizable
I (co-)variance

I based on the 1970s methods

I but with arbitrary weighting

I enabling partitioned computation (AVX, . . .)

I for covariance and variance

6

Weighted Incremental (Co-)Variance

Generalized Form

To derive the general form, we first

1. remove the scaling factor
1

n−1 (resp.
1
n) for now (simplification!)

2. partition the data into parts A and B

3. add weights ωi to each observation (use ΩA =

∑
i∈A ωi)

then we get for any partition A and variables X , Y :

x̂A =
1

ΩA

∑
i∈A

ωixi

ŷA =
1

ΩA

∑
i∈A

ωiyi

Cov(X , Y)A ∝ XYA =

∑
i∈A

ωi(xi − x̂A)(yi − ŷA)

We can get the usual covariance with ωi = 1 and Cov(X , Y) =
1

Ω−1XY

weighted

means

7

Generalized Form

Using a variant of König-Huygens and some algebra (see the paper for details),

we get the equations to merge two partitions A and B:

ΩAB = ΩA + ΩB

x̂AB =
1

ΩAB
(ΩAx̂A + ΩBx̂B)

ŷAB =
1

ΩAB
(ΩAŷA + ΩBŷB)

XYAB = XYA + XYB +
ΩAΩB
ΩAB

(x̂A − x̂B) (ŷA − ŷB)

all di�erences at

data precision 3

Benefits of this form:

I a partition P can be summarized to a few values: ΩP , x̂P , ŷP , XYP
I two partition summaries can be combined into one

I we can partition our data using AVX, GPU, clusters, . . .

Note: for |B| = 1 and ωi = 1, this gives the “online” equations known from literature:

XYAb = XYA + 0 +
|A|
|A|+1 (x̂A − xb) (ŷA − yb)

8

Example: AVX Parallelization of Variance

Advanced Vector Extensions (AVX) are modern vector instructions that perform the

same instruction on 4–8 doubles (8-16 single-precision floats) in parallel.

Input data

AVX register

AVX accumulators

Partition sums Squared deviations

Reduction

∑
X

∑
(X − E[X])

2
Output

Because the final reduction cost is negligible for larger data sets,

our parallel AVX versions are ≈ 4× faster than the comparable non-parallel versions.

On GPUs, we could do this 1000× parallel (but beware other GPU precision challenges)!

needs weighted
aggregation

needs weighted
aggregation

9

Experiments

Numeric Precision of Variance

Numeric precision of di�erent (unweighted) variance algorithms:

10-25

10-20

10-15

10-10

10-5

100

105

10-4 10-2 100 102 104 106 108 1010

Er
ro

r /
 M

ea
n

Mean / Standard Deviation

Textbook: E[X2]-E[X]2

Two-pass: E[(X-E[X])2]
Hanson

West
Youngs-Cramer

Two-pass: Neely
Double precision

10

Performance and Accuracy of Variance

Excerpt of results (see article for many more variants) on 100.000.000 synthetic doubles:

Method Variant Runtime (s) Precision (decimal digits)

Variance Min Mean Median Max Best Mean Median Worst

Textbook double 168.85 168.97 168.93 169.22 12.848 4.086 6.150 -11.153

Welford / Knuth double 929.17 929.97 929.93 931.18 13.224 7.441 8.787 -0.963

Youngs & Cramer double 212.20 212.53 212.49 213.31 12.840 8.284 9.588 0.454

Welford / Knuth AVX×4 50.93 51.47 51.22 52.83 14.041 8.892 11.306 -0.547

Youngs & Cramer AVX×4 49.82 52.88 52.98 54.85 14.353 9.524 10.600 0.805

Two-pass double 336.78 337.02 336.93 337.38 14.135 10.168 12.383 1.045

Two-pass AVX×4 91.04 92.17 91.74 95.31 14.239 11.907 13.595 1.108

Two-pass (Neely) double 337.15 337.41 337.32 338.08 14.135 12.372 12.485 10.042

Two-pass (Neely) AVX×4 89.07 90.47 89.75 95.90 14.375 13.240 13.591 10.707

Textbook: E[X 2
]− E[X]

2
; Two-Pass: E[X − E[X]]; Welford: [Wel62]; Knuth: [Knu81];

Youngs-Cramer: [YC71]; Neely’s two-pass improvement [Nee66] Pipelining

11

Example: Gaussian Mixture Modeling

Comparing di�erent EM clustering implementations:

10-20

10-15

10-10

10-5

100

105

1010

1015

1020

 0.1 1 10 100 1000 10000 100000 1x106 1x107 1x108

A
ve

ra
ge

 E
rr

or

Relative distance of clusters

R Mclust, two-pass
Spark single-core, textbook
Spark multi-core, textbook

sklearn, two-pass
ELKI, textbook
ELKI, two-pass
ELKI, Welford

12

Example: Gaussian Mixture Modeling

Comparing di�erent EM clustering implementations:

 0

 5

 10

 15

 20

 0.1 1 10 100 1000 10000 100000 1x106 1x107 1x108

A
ve

ra
ge

 R
un

ti
m

e
[s

]

Relative distance of clusters

R Mclust, two-pass
Spark single-core, textbook
Spark multi-core, textbook

sklearn, two-pass
ELKI, textbook
ELKI, two-pass
ELKI, Welford

12

Example: Exponentially Weighted Moving Variance

Improving time series analysis with weighted moving standard deviation:

13

Example: Exponentially Weighted Moving Correlation

Weighted moving correlation of tickers (covariance normalized by standard deviation):

14

I We can compute weighted (co-)variance accurately
in parallel, on partitions, and distributed

I Numerical precision ma�ers:
do not compute E[X 2

]− E[X]
2 with floats

I Even basic statistics can be tricky to compute reliably
I Test your tools – do not blindly trust tools

14

Outline

Variance & Covariance

Definition

Computing (Co-)Variance

Contributions

Weighted Incremental (Co-)Variance

General Form

Example: AVX Parallelization

Experiments

Bibliography

14

Bibliography i

[CGL82] T. F. Chan, G. H. Golub, and R. J. LeVeque. “Updating Formulae and a

Pairwise Algorithm for Computing Sample Variances”. In: COMPSTAT 1982.

1982, pp. 30–41.

[CGL83] T. F. Chan, G. H. Golub, and R. J. LeVeque. “Algorithms for Computing the

Sample Variance: Analysis and Recommendations”. In: The American
Statistician 37.3 (1983), pp. 242–247.

[CL79] T. F. Chan and J. G. Lewis. “Computing Standard Deviations: Accuracy”. In:

Communications of the ACM 22.9 (1979), pp. 526–531.

[Cot75] I. W. Co�on. “Remark on Stably Updating Mean and Standard Deviation of

Data”. In: Communications of the ACM 18.8 (1975), p. 458.

15

http://dx.doi.org/10.1007/978-3-642-51461-6_3
http://dx.doi.org/10.1007/978-3-642-51461-6_3
http://dx.doi.org/10.2307/2683386
http://dx.doi.org/10.2307/2683386
http://dx.doi.org/10.1145/359146.359152
http://dx.doi.org/10.1145/360933.360981
http://dx.doi.org/10.1145/360933.360981

Bibliography ii

[Han75] R. J. Hanson. “Stably Updating Mean and Standard Deviation of Data”. In:

Communications of the ACM 18.1 (1975), pp. 57–58.

[Knu81] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley, 1981. isbn: 0-201-03822-6.

[Lin74] R. F. Ling. “Comparison of Several Algorithms for Computing Sample Means

and Variances”. In: Journal of the American Statistical Association 69.348 (1974),

pp. 859–866.

[Nee66] P. M. Neely. “Comparison of Several Algorithms for Computation of Means,

Standard Deviations and Correlation Coe�icients”. In: Communications of the
ACM 9.7 (1966), pp. 496–499.

[Rod67] B. E. Rodden. “Error-free methods for statistical computations”. In:

Communications of the ACM 10.3 (1967), pp. 179–180.

16

http://dx.doi.org/10.1145/360569.360662
http://dx.doi.org/10.2307/2286154
http://dx.doi.org/10.2307/2286154
http://dx.doi.org/10.1145/365719.365958
http://dx.doi.org/10.1145/365719.365958
http://dx.doi.org/10.1145/363162.363205

Bibliography iii

[Van68] A. J. Van Reeken. “Le�ers to the editor: Dealing with Neely’s algorithms”. In:

Communications of the ACM 11.3 (1968), pp. 149–150.

[Wel62] B. P. Welford. “Note on a Method for Calculating Corrected Sums of Squares

and Products”. In: Technometrics 4.3 (1962), pp. 419–420.

[Wes79] D. H. D. West. “Updating mean and variance estimates: an improved method”.

In: Communications of the ACM 22.9 (1979), pp. 532–535.

[YC71] E. A. Youngs and E. M. Cramer. “Some Results Relevant to Choice of Sum and

Sum-of-Product Algorithms”. In: Technometrics 13.3 (1971), pp. 657–665.

17

http://dx.doi.org/10.1145/362929.362961
http://dx.doi.org/10.2307/1266577
http://dx.doi.org/10.2307/1266577
http://dx.doi.org/10.1145/359146.359153
http://dx.doi.org/10.1080/00401706.1971.10488826
http://dx.doi.org/10.1080/00401706.1971.10488826

Pipelining E�ects

West / Welford / Knuth: These methods use one multiplication less, but is slower

Youngs & Cramer: This method uses one multiplication more, but is faster

ΩA

xb

x̂A

++

− /

+=

×

×

+=

XXA

West [Wes79]

ΩA

xb

XA

++

×

+=

−

×

×

/

+=

XXA

Youngs and Cramer [YC71]

Runtime di�erence can be explained by CPU pipelining (and slow divisions):

Independent of division Depends on division result

With our AVX code, we compute the division only once, broadcast it,

and use it via AVX multiplication, which allows be�er pipelining. Pipelining

	Variance & Covariance
	Definition
	Computing (Co-)Variance
	Contributions

	Weighted Incremental (Co-)Variance
	General Form
	Example: AVX Parallelization

	Experiments
	
	Bibliography
	References

	
	Appendix
	Backup Slides

