

Numerically Stable Parallel Computation of (Co-)Variance

Erich Schubert, Michael Gertz

30th Int. Conf. on Scientific and Statistical Database Management (SSDBM '18) July 9-11, 2018, Bozen-Bolzano, Italy

Ruprecht-Karls-Universität Heidelberg {schubert,gertz}@informatik.uni-heidelberg.de

Variance & Covariance

Variance

Variance is a widely used summary statistic:

$$Var(X) = E\left[(X - E[X])^2\right]$$

where E[_] denotes the expected value (e.g., arithmetic average).

Variance is the "expected squared deviation from the mean".

Estimate the variance from a data sample ("two pass algorithm"):

- 1. compute $\mu_X = \frac{1}{n} \sum_i x_i$
- 2. compute $Var(X) = \frac{1}{n-1} \sum_{i} (x_i \mu_X)^2$ (or with normalization factor $\frac{1}{n}$)

From this we can, e.g., compute the standard deviation $\sigma_X := \sqrt{Var(X)}$. This is the most *common measure of spread*.

Covariance

Covariance is similar, but for two variables:

$$\operatorname{Cov}(X, Y) = \mathsf{E}\Big[(X - \mathsf{E}[X])(Y - \mathsf{E}[Y])\Big]$$

In particular, we have Cov(X, X) = Var(X).

Used for example in:

Pearson correlation:

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)} \cdot \sqrt{\operatorname{Var}(Y)}} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

Principal Component Analysis (PCA): decomposition of the covariance matrix

• Gaussian Mixture Modeling ("EM Clustering") uses *weighted* (co-)variance

Variance

In most statistics textbooks, we will find this "textbook algorithm":

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$
(1)

This is:

- mathematically correct (proven, c.f. König-Huygens formula, Steiner translation)
- attractive (just one pass over the data, aggregate $\sum x_i$, $\sum x_i^2$, N)

Variance

In most statistics textbooks, we will find this "textbook algorithm":

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$
(1)

This is:

- mathematically correct (proven, c.f. König-Huygens formula, Steiner translation)
- attractive (just one pass over the data, aggregate $\sum x_i, \sum x_i^2, N$)
- numerically problematic with *floating point computations*
- Use Equation (1) only analytically, not with floating point data.

Catastrophic Cancellation

For illustration, assume floating points with four digits of precision:

Catastrophic Cancellation

For illustration, assume floating points with four digits of precision:

• If $Var(X) \gg E[X]^2$, precision is good. But as $E[X]^2 \gg 0$, we lose numerical precision.

- ▶ We can first center our data, E[X] = 0: then Var(X) = E[(X E[X])²] = E[X²]
 But then we need two passes over the data set. For large data, this will be 2x slower.
- Algorithms for computing variance in a *single-pass* over the data set.

E.g., Welford [Wel62], Neely [Nee66], Rodden [Rod67], Van Reeken [Van68], Youngs and Cramer [YC71], Ling [Lin74], Hanson [Han75], Cotton [Cot75], West [Wes79], Chan and Lewis [CL79], Donald Knuth in TAoCP II [Knu81], Chan et al. [CGL82; CGL83], ...

- Incremental (add one sample) variants of variance mostly
- Still broken (or slow) in many SQL databases & toolkits!

Let us build a small unit test with two values, $[\mu - 1, \mu + 1]$ and the mean μ :

$$\operatorname{Var}(X) = \frac{1}{2-1} \left((\mu - 1 - \mu)^2 + (\mu + 1 - \mu)^2 \right) = \frac{1}{2-1} \left(-1^2 + 1^2 \right) = 2$$

Easy with $\mu = 0$, but we will use $\mu = 100\,000\,000$; and thus $\mu^2 = 10^{16}$ Double precision: about 16 decimal digits (52+1 bit mantissa). Single precision: about 6 decimal digits (23+1 bit mantissa).

this breaks way too early for many use cases!

- Incremental (add one sample) variants of variance mostly
- Still broken (or slow) in many SQL databases & toolkits!

PostgreSQL 9.6: SELECT VAR_SAMP(x::float8), COVAR_SAMP(x,x) FROM (SELECT 99999999 AS x UNION SELECT 100000001 AS x) AS x 0 X 0 X

- Incremental (add one sample) variants of variance mostly
- Still broken (or slow) in many SQL databases & toolkits!

MySQL 5.6:

SELECT VAR_SAMP(X) FROM (SELECT 99999999 AS X UNION SELECT 100000001 AS X) AS X 2 ✓ no covariance function?

MySQL is one of the few databases that implements a numerically stable approach.

- Incremental (add one sample) variants of variance mostly
- Still broken (or slow) in many SQL databases & toolkits!

MS SQL Server 2017: SELECT VAR(x) FROM (SELECT 99999999 AS x UNION SELECT 100000001 AS x) AS x; 0 X no covariance function?

- Incremental (add one sample) variants of variance mostly
- Still broken (or slow) in many SQL databases & toolkits!

HyPer 0.6:

```
SELECT VAR_SAMP(x) FROM
(SELECT 999999999::REAL AS x UNION SELECT 100000001::REAL AS x)
0 X no covariance function?
```

Contributions

In this paper, we revisit the 1970s results, and contribute:

- numerically stable
- weighted
- parallelizable
- **(co-)**variance

Contributions

In this paper, we revisit the 1970s results, and contribute:

- numerically stable
- weighted
- parallelizable
- (co-)variance

- based on the 1970s methods
- but with arbitrary weighting
- enabling partitioned computation (AVX, ...)
- for covariance and variance

Weighted Incremental (Co-)Variance

Generalized Form

To derive the general form, we first

- 1. remove the scaling factor $\frac{1}{n-1}$ (resp. $\frac{1}{n}$) for now (simplification!)
- 2. partition the data into parts A and B
- 3. add weights ω_i to each observation (use $\Omega_A = \sum_{i \in A} \omega_i$)

then we get for any partition *A* and variables *X*, *Y*:

$$\widehat{x}_{A} = \frac{1}{\Omega_{A}} \sum_{i \in A} \omega_{i} x_{i}$$
 weighted

$$\widehat{y}_{A} = \frac{1}{\Omega_{A}} \sum_{i \in A} \omega_{i} y_{i}$$
 means

$$\operatorname{Cov}(X, Y)_{A} \propto XY_{A} = \sum_{i \in A} \omega_{i} (x_{i} - \widehat{x}_{A})(y_{i} - \widehat{y}_{A})$$

We can get the usual covariance with $\omega_i = 1$ and $Cov(X, Y) = \frac{1}{\Omega - 1}XY$

Generalized Form

Using a variant of König-Huygens and some algebra (see the paper for details), we get the equations to *merge* two partitions *A* and *B*:

$$\Omega_{AB} = \Omega_A + \Omega_B$$

$$\hat{x}_{AB} = \frac{1}{\Omega_{AB}} (\Omega_A \hat{x}_A + \Omega_B \hat{x}_B)$$

$$\hat{y}_{AB} = \frac{1}{\Omega_{AB}} (\Omega_A \hat{y}_A + \Omega_B \hat{y}_B)$$

$$XY_{AB} = XY_A + XY_B + \frac{\Omega_A \Omega_B}{\Omega_{AB}} (\hat{x}_A - \hat{x}_B) (\hat{y}_A - \hat{y}_B)$$

all differences at data precision ✔

Benefits of this form:

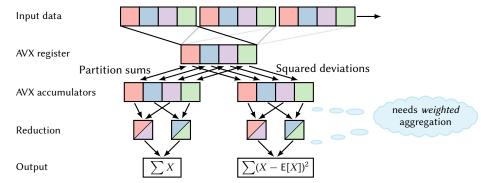
- a partition *P* can be summarized to a few values: Ω_P , \hat{x}_P , \hat{y}_P , XY_P
- two partition summaries can be combined into one
- we can partition our data using AVX, GPU, clusters, ...

Note: for |B| = 1 and $\omega_i = 1$, this gives the "online" equations known from literature:

$$XY_{Ab} = XY_A + 0 + \frac{|A|}{|A|+1} \left(\widehat{x}_A - x_b\right) \left(\widehat{y}_A - y_b\right)$$

Example: AVX Parallelization of Variance

Advanced Vector Extensions (AVX) are modern vector instructions that perform the *same instruction* on 4–8 doubles (8-16 single-precision floats) in parallel.

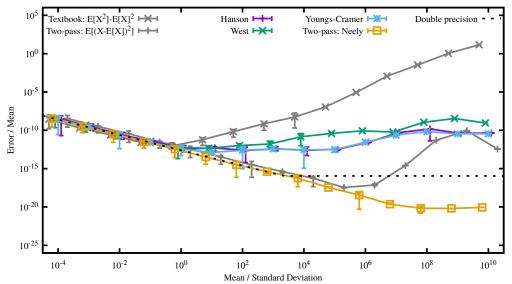


Because the final reduction cost is negligible for larger data sets,

our parallel AVX versions are $\approx 4 \times$ faster than the comparable non-parallel versions. On GPUs, we could do this 1000× parallel (but beware other GPU precision challenges)! Experiments

Numeric Precision of Variance

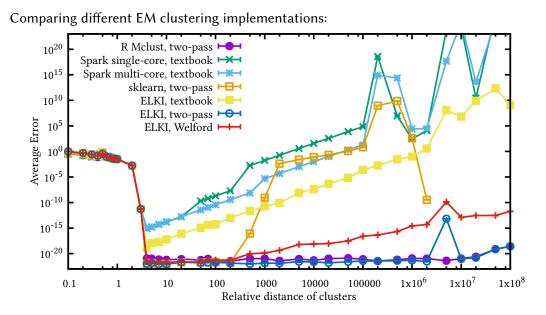
Numeric precision of different (unweighted) variance algorithms:

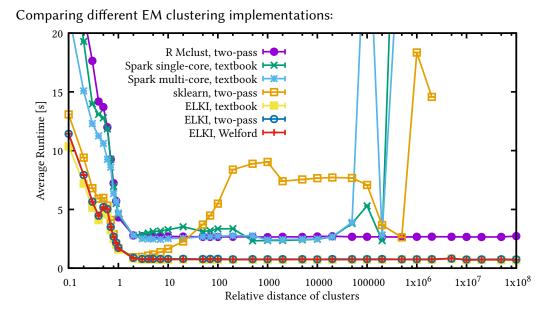


Excerpt of results (see article for many more variants) on 100.000.000 synthetic doubles:

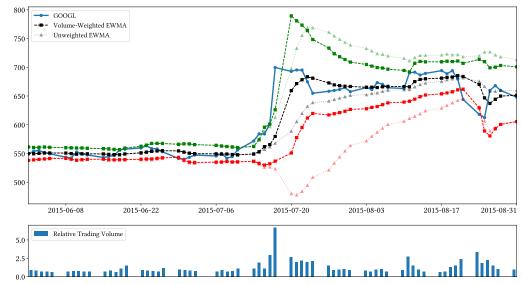
Method	Variant	Runtime (s)				Precision (decimal digits)			
Variance		Min	Mean	Median	Max	Best	Mean	Median	Worst
Textbook	double	168.85	168.97	168.93	169.22	12.848	4.086	6.150	-11.153
Welford / Knuth	double	929.17	929.97	929.93	931.18	13.224	7.441	8.787	-0.963
Youngs & Cramer	double	212.20	212.53	212.49	213.31	12.840	8.284	9.588	0.454
Welford / Knuth	$AVX \times 4$	50.93	51.47	51.22	52.83	14.041	8.892	11.306	-0.547
Youngs & Cramer	$AVX \times 4$	49.82	52.88	52.98	54.85	14.353	9.524	10.600	0.805
Two-pass	double	336.78	337.02	336.93	337.38	14.135	10.168	12.383	1.045
Two-pass	$AVX \times 4$	91.04	92.17	91.74	95.31	14.239	11.907	13.595	1.108
Two-pass (Neely)	double	337.15	337.41	337.32	338.08	14.135	12.372	12.485	10.042
Two-pass (Neely)	$AVX \times 4$	89.07	90.47	89.75	95.90	14.375	13.240	13.591	10.707

Textbook: $E[X^2] - E[X]^2$; Two-Pass: E[X - E[X]]; Welford: [Wel62]; Knuth: [Knu81]; Youngs-Cramer: [YC71]; Neely's two-pass improvement [Nee66]



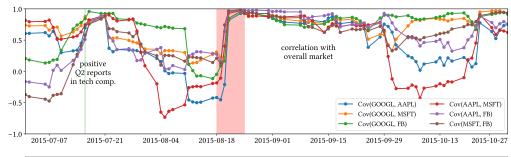


Example: Exponentially Weighted Moving Variance

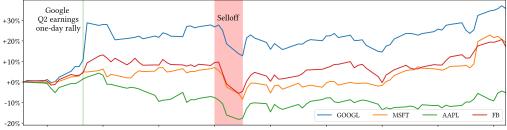


Improving time series analysis with *weighted* moving standard deviation:

Example: Exponentially Weighted Moving Correlation



Weighted moving correlation of tickers (covariance normalized by standard deviation):



- We can compute weighted (co-)variance accurately in parallel, on partitions, and distributed
- Numerical precision matters:
 do not *compute* E[X²] E[X]² with floats
- **•** Even *basic* statistics can be tricky to compute reliably
- Test your tools do not blindly trust tools

Outline

Variance & Covariance

Definition

Computing (Co-)Variance

Contributions

Weighted Incremental (Co-)Variance

General Form

Example: AVX Parallelization

Experiments

Bibliography

Bibliography i

- [CGL82] T. F. Chan, G. H. Golub, and R. J. LeVeque. "Updating Formulae and a Pairwise Algorithm for Computing Sample Variances". In: COMPSTAT 1982. 1982, pp. 30-41.
- [CGL83] T. F. Chan, G. H. Golub, and R. J. LeVeque. "Algorithms for Computing the Sample Variance: Analysis and Recommendations". In: *The American Statistician* 37.3 (1983), pp. 242–247.
- [CL79] T. F. Chan and J. G. Lewis. "Computing Standard Deviations: Accuracy". In: Communications of the ACM 22.9 (1979), pp. 526-531.
- [Cot75] I. W. Cotton. "Remark on Stably Updating Mean and Standard Deviation of Data". In: Communications of the ACM 18.8 (1975), p. 458.

Bibliography ii

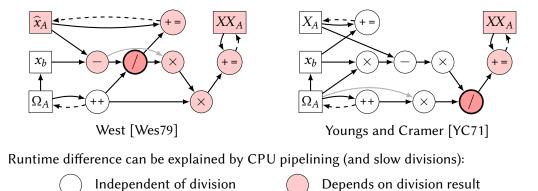
- [Han75] R. J. Hanson. "Stably Updating Mean and Standard Deviation of Data". In: *Communications of the ACM* 18.1 (1975), pp. 57–58.
- [Knu81] D. E. Knuth. *The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd Edition.* Addison-Wesley, 1981. ISBN: 0-201-03822-6.
- [Lin74] R. F. Ling. "Comparison of Several Algorithms for Computing Sample Means and Variances". In: Journal of the American Statistical Association 69.348 (1974), pp. 859–866.
- [Nee66] P. M. Neely. "Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients". In: Communications of the ACM 9.7 (1966), pp. 496–499.
- [Rod67] B. E. Rodden. "Error-free methods for statistical computations". In: Communications of the ACM 10.3 (1967), pp. 179–180.

Bibliography iii

- [Van68] A. J. Van Reeken. "Letters to the editor: Dealing with Neely's algorithms". In: Communications of the ACM 11.3 (1968), pp. 149–150.
- [Wel62] B. P. Welford. "Note on a Method for Calculating Corrected Sums of Squares and Products". In: *Technometrics* 4.3 (1962), pp. 419–420.
- [Wes79] D. H. D. West. "Updating mean and variance estimates: an improved method". In: Communications of the ACM 22.9 (1979), pp. 532–535.
- [YC71] E. A. Youngs and E. M. Cramer. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms". In: *Technometrics* 13.3 (1971), pp. 657–665.

Pipelining Effects

West / Welford / Knuth: These methods use one multiplication *less*, but is slower Youngs & Cramer: This method uses one multiplication *more*, but is faster



With our AVX code, we compute the division only *once*, broadcast it, and use it via AVX multiplication, which allows better pipelining.

Pipelining