
ORI GIN AL PA PER

Multilingual and cross-domain temporal tagging

Jannik Strötgen • Michael Gertz

Published online: 8 May 2012

� Springer Science+Business Media B.V. 2012

Abstract Extraction and normalization of temporal expressions from documents

are important steps towards deep text understanding and a prerequisite for many NLP

tasks such as information extraction, question answering, and document summari-

zation. There are different ways to express (the same) temporal information in

documents. However, after identifying temporal expressions, they can be normalized

according to some standard format. This allows the usage of temporal information in

a term- and language-independent way. In this paper, we describe the challenges of

temporal tagging in different domains, give an overview of existing annotated cor-

pora, and survey existing approaches for temporal tagging. Finally, we present our

publicly available temporal tagger HeidelTime, which is easily extensible to further

languages due to its strict separation of source code and language resources like

patterns and rules. We present a broad evaluation on multiple languages and domains

on existing corpora as well as on a newly created corpus for a language/domain

combination for which no annotated corpus has been available so far.

Keywords Temporal information � Temporal tagger � Named entity recognition �
Named entity normalization � TIMEX2 � TIMEX3

1 Introduction

Temporal information is prevalent in many kinds of documents, and its extraction

and normalization from documents are important preprocessing steps for many

natural language processing and understanding tasks. For example, in information

J. Strötgen � M. Gertz (&)

Institute of Computer Science, Heidelberg University, Heidelberg, Germany

e-mail: gertz@informatik.uni-heidelberg.de

J. Strötgen

e-mail: stroetgen@informatik.uni-heidelberg.de

123

Lang Resources & Evaluation (2013) 47:269–298

DOI 10.1007/s10579-012-9179-y

retrieval, temporal information can be used, among others, for temporal clustering

of documents along timelines and querying a document collection using temporal

constraints. Alonso et al. (2007, 2011) give an overview of the value of temporal

information and discuss current research trends in temporal information retrieval. In

research areas requiring rich natural language understanding, such as information

extraction, document summarization, and question answering, temporal information

is often utilized as well. For example, in topic detection and tracking, it helps to

identify new unreported events and to assign documents to already detected events

(see, e.g., Allan 2002; Makkonen et al. 2003).

Independent of the specific task, all applications using temporal information

mentioned in text documents rely on high quality temporal taggers, which extract

temporal expressions from documents and normalize them. Due to its importance

for many tasks, temporal tagging has become an active research field over the past

few years. This resulted in the development of standards for temporal annotation

such as TIDES TIMEX2 (Ferro et al. 2005) and the markup language TimeML

(Pustejovsky et al. 2003a), and also in the creation of annotated corpora, e.g., the

TimeBank corpus (Pustejovsky et al. 2003b). In addition, several temporal taggers

were developed and competitions were organized where temporal taggers were

evaluated. However, many temporal taggers are adapted to a specific domain (the

news domain) and support only one language (often English).

In this paper, we present our temporal tagger, called HeidelTime, which achieves

high quality results for the extraction and the normalization of temporal expressions

not only in news documents but also in narrative-style documents. In addition,

HeidelTime is developed as a rule-based system with a strict separation between the

source code and all resources such as patterns, normalization information, and rules.

This allows the simple development of resources for additional languages. In

addition, due to the modular structure of the resources, HeidelTime can be extended

with task-specific modules. This combination of domain-independence, multiling-

uality, extensibility, modifiability, and the high quality of both the extraction and the

normalization of temporal expressions is what distinguishes HeidelTime from other

temporal taggers. So far, we developed resources for English and German1 and, in

this paper, we detail evaluation results for both languages. For this, we used publicly

available corpora and developed a German corpus. This corpus as well as

HeidelTime itself and several additional tools, e.g., for corpora preparation and

evaluation, are made available to the public.2

The remainder of the paper is structured as follows: In Sect. 2, after a discussion

of the different types of temporal expressions and how they occur in documents, we

discuss different annotation standards. In Sect. 3, we give an overview of time-

annotated corpora and briefly describe the creation of our new corpus. In addition,

we survey temporal taggers by presenting their methods. Then, in Sect. 4,

HeidelTime and its system architecture are presented, and we show how

1 Recently, we were able to add resources for Dutch. These were developed and kindly provided by

Matje van de Camp (Tilburg University).
2 HeidelTime, the German corpus as well as additional scripts and components are publicly available

at http://dbs.ifi.uni-heidelberg.de/heideltime/. Thus, all our evaluation results are reproducible.

270 J. Strötgen, M. Gertz

123

http://dbs.ifi.uni-heidelberg.de/heideltime/

HeidelTime is integrated into our text mining pipeline. The evaluation results on

different corpora and languages are presented in Sect. 5. Finally, we conclude our

paper and describe ongoing work in Sect. 6.

2 Temporal information in documents

In many types of text documents, there is a lot of temporal information. The most

simple type of temporal information is the document creation time or the time when

the document was last modified. This information is usually directly accessible

through the metadata of a document. In addition, in several domains, documents

often contain many temporal expressions directly in the text. For example, news

documents and Wikipedia articles typically contain several temporal expressions. In

the context of our work on event-centric document similarity (Strötgen et al. 2011),

we analyzed the English Wikipedia featured articles3 and the cross-language linked

German ones with respect to the contained temporal expressions. We chose these

documents because they are grouped into categories allowing a category-based

analysis. As the numbers in Table 1 show, temporal expressions are frequent in all

kinds of Wikipedia articles with documents of categories such as Biographies,

Education, and Warfare containing many more temporal expressions than

documents about, e.g., Video gaming and Biology, which still contain about 39

temporal expressions on average in English language articles.

The temporal expressions in the text of documents can describe different

temporal phenomena such as a point in time or a time interval. In Sect. 2.1, we give

an overview of these different types of temporal expressions and illustrate them

using some examples. In Sect. 2.2, we detail possible linguistic realizations of

temporal expressions and point out the different challenges for their extraction and

normalization. Finally, we present different standards for the annotation of temporal

expressions in Sect. 2.3.

2.1 Types of temporal expressions

Following TimeML (Pustejovsky et al. 2005), the standard markup language for

temporal annotation, we group temporal expressions into four categories: date, time,

duration, and set. Time and date expressions (e.g., ‘‘11 a.m.’’ or ‘‘July 29, 2003’’)

can be placed on a timeline—although at different granularities. Exceptions are

generically used expressions and vague expressions, e.g., ‘‘several days later’’. Here,

one can only specify the temporal relation to a reference time if this is known.

While expressions of the type duration are used to inform about the length of an

interval (e.g., ‘‘three years’’ in ‘‘They have been traveling through Europe for three

years’’), expressions of the type set provide information about the periodical aspect

of an event (e.g., ‘‘twice a month’’ in ‘‘They go out for lunch twice a month’’). Note

that durations and sets may additionally be anchored to a specific point in time

(Pustejovsky et al. 2005).

3 http://en.wikipedia.org/wiki/Wikipedia:Featured_articles.

Multilingual and cross-domain temporal tagging 271

123

http://en.wikipedia.org/wiki/Wikipedia:Featured_articles

Due to the fact that temporal expressions can be normalized, a standardized value

can be associated with each temporal expression. Thus, regardless of the used term

or language, every temporal expression referring to the same point in time or

carrying the same meaning can be normalized to the same value in some kind of

standard format such as the ISO 8601 standard for temporal information. For

example, assuming a document’s creation time is February 27, 2011 (2011-02-27

according to ISO 8601), all the expressions ‘‘the day before yesterday’’, ‘‘two days

ago’’, ‘‘last Friday’’, or ‘‘February 25th’’ refer to the same point in time and thus can

be normalized to 2011-02-25. These examples show that temporal semantics,

Table 1 Average number of

temporal expressions per

document of the English

Wikipedia featured articles

grouped by category. The

numbers in parentheses are for

the German cross-language

linked documents

Category Timexes

Biographies 166.0 (237.2)

Education 148.6 (20.1)

Sport and recreation 148.3 (161.2)

Geography and places 138.9 (78.0)

Warfare 130.0 (214.9)

History 119.2 (67.4)

Business, economics, and finance 109.9 (52.3)

Culture and society 104.2 (41.7)

Law 96.5 (22.4)

Politics and government 95.3 (47.3)

Religion, mysticism, and mythology 90.4 (48.6)

Transport 88.8 (44.5)

Art, architecture, and archaeology 85.3 (28.8)

Royalty, nobility, and heraldry 84.0 (73.0)

Mathematics 82.1 (23.0)

Engineering and technology 80.4 (42.9)

Awards, decorations, and vexillology 80.1 (34.7)

Literature and theatre 80.0 (31.9)

Meteorology 73.9 (90.9)

Media 68.5 (35.0)

Music 66.7 (23.1)

Physics and astronomy 65.1 (43.4)

Language and linguistics 64.2 (32.4)

Health and medicine 57.0 (26.2)

Geology and geophysics 55.3 (29.4)

Food and drink 54.7 (66.8)

Philosophy and psychology 54.7 (16.7)

Computing 54.2 (27.4)

Animals 53.1 (23.1)

Chemistry and mineralogy 43.8 (18.6)

Video gaming 39.3 (26.3)

Biology 39.1 (20.2)

272 J. Strötgen, M. Gertz

123

e.g., referring to a specific point in time, can be expressed in many different ways,

an aspect we will describe in more detail in the next section.

2.2 Realizations of temporal expressions

There are many ways to realize temporal expressions in text documents. The way of

realization directly influences the level of difficulty for the normalization of a

temporal expression. According to Pustejovsky et al. (2003a), there are three major

types of temporal expressions: (1) fully specified temporal expressions, (2)

underspecified temporal expressions, and (3) durations. However, since we already

use the categories date, time, duration, and set for temporal expressions, we prefer to

further distinguish similar to Schilder and Habel (2001) and according to our

previous work (Alonso et al. 2007; Strötgen et al. 2010) between explicit, implicit,

and relative expressions.

• Explicit expressions: All expressions that are fully specified and can thus be

normalized without any further knowledge are defined as explicit temporal

expressions. In Fig. 1, explicit temporal expressions are marked with transparent

boxes. Note that the granularity of the expression does not matter. For example, the

expressions of the granularity day ‘‘May 22, 1995’’ and of granularity month ‘‘April

1985’’ can be normalized directly to ‘‘1995-05-22’’ and ‘‘1985-04’’, respectively.

• Implicit expressions: Implicit temporal expressions can be normalized once their

implicit temporal semantics is known. Examples are names of holidays and

events that can directly be associated with a point or interval in time. Whether

such implicit expressions are identified and correctly normalized by a temporal

tagger highly depends on the underlying knowledge base. A simple implicit

expression is ‘‘Christmas 2005’’ since Christmas refers to December 25. Thus, it

can be normalized to ‘‘2005-12-25’’. A more complex example is ‘‘Labor day

(a) (b)

Fig. 1 Examples of temporal expressions in a news document from the TimeBank corpus (a) and in a
narrative document from the WikiWars corpus (b) with explicit (transparent boxes) and relative (solid
boxes) expressions. Arrows indicate what kind of context information is needed to normalize the temporal
expressions and thus point to the reference times. In one case, the tense of the sentence is needed, which is
indicated by the arrow ‘‘December’’ to ‘‘cited’’

Multilingual and cross-domain temporal tagging 273

123

2009’’, which can be normalized to ‘‘2009-09-07’’ if the temporal tagger knows

that Labor Day can always be mapped to the first Monday in September; this can

then be calculated for the specific year, in this case 2009. An example of an

event specified as an implicit temporal expression is ‘‘soccer world cup final

2010’’, which took place on July 11, 2010. Of course, the knowledge base of a

temporal tagger is extensible with respect to such events in an almost infinite

manner. For this, it is important that a temporal tagger can easily be extended.

• Relative expressions: The main characteristic of relative expressions is that they

cannot be normalized without further context information. In Fig. 1, relative

expressions are marked with solid boxes. For expressions such as ‘‘today’’ and

‘‘the following year’’ but also for underspecified expressions such as ‘‘Decem-

ber’’ or ‘‘December 25’’, a reference time has to be known to anchor the

expression. This reference time can either be the document creation time (e.g.,

for ‘‘today’’), or another temporal expression in the document (e.g., for ‘‘the

following year’’). Sometimes, also the temporal relation to the reference time

has to be known. For instance, in Fig. 1a, ‘‘December’’ cannot be normalized

without knowing the relationship to the reference time. In such cases, often the

tense of the sentence can be used to determine this relationship. That is, usually,

present and future tense refer to an upcoming point in time while past tense

refers to a previous point in time. In the example, the tense is past tense

(‘‘cited’’), and thus ‘‘December’’ is normalized to ‘‘1997–12’’.

Independent of the type of an expression, the normalization task of a temporal

tagger is to assign the same value to all expressions carrying the same semantics or

referring to the same point in time. While this is straightforward in some cases, it is

a difficult task in other cases. For example, in Fig. 1b, identifying ‘‘1979’’ and not

‘‘1978’’ as reference time for ‘‘December 27’’ is challenging since both expressions

are explicit and of the granularity type year. In addition, different strategies have to

be developed for news and narrative documents. For example, although ‘‘Decem-

ber’’ (Fig. 1a) and ‘‘December 25’’ (Fig. 1b) occur in a similar way, in the first case,

the reference time is the document creation time, and in the second case, it is a

previously mentioned temporal expression in the document. We will discuss these

challenges, with a particular focus on the difficulties of determining the reference

time, in Sect. 4.1 when presenting HeidelTime’s approach for normalizing temporal

expressions. In the next section, we present the two most popular annotation

standards for temporal expressions in documents.

2.3 Annotating temporal expressions

Currently, there are two annotation standards used for annotating temporal

expressions in documents: The TIDES TIMEX2 standard4 and TimeML,5 a

specification language for temporal annotation containing TIMEX3 tags for

4 http://fofoca.mitre.org/.
5 http://www.timeml.org/.

274 J. Strötgen, M. Gertz

123

http://fofoca.mitre.org/.
http://www.timeml.org/.

temporal expressions. Both standards present guidelines for the annotation of

temporal expressions, including how to determine the extents of expressions and

their normalizations. In both cases, the normalization is defined according to the

ISO 8601 standard for temporal information with some extensions.

The TIDES annotation guidelines are based on the principles that temporal

expressions should be tagged ‘‘if a human can determine a value for [it]’’, and that

the value ‘‘must be based on evidence internal to the document’’ (Ferro et al. 2001).

For the normalization, the TIMEX2 tag may contain the following attributes (Ferro

et al. 2005):

• VAL: a normalized form of the date/time

• MOD: captures temporal modifiers

• ANCHOR_VAL: a normalized form of an anchoring date/time

• ANCHOR_DIR: the relative direction between VAL and ANCHOR_VAL

• SET: identifies expressions denoting sets of times

TimeML is based on the TIDES standard and was developed to capture further

types of temporal information in documents: events, relationships between events

and temporal expressions, and relationships between two events. For this, in

addition to a tag for temporal expressions (TIMEX3), TimeML contains tags for

annotating events, temporal links, and temporal signals (Pustejovsky et al. 2003a,

2005). Due to this extension of annotating temporal information, there are

significant changes between TIMEX2 and TIMEX3. These changes affect the

attribute structure as well as the exact use. For example, specific types of pre- and

post-modifications of temporal expressions are part of TIMEX2 tags while in

TimeML, they are outside TIMEX3 tags. Such constructs are handled using the

newly introduced tags for annotating relations between temporal expressions and

events. In addition, TIMEX3 tags cannot be nested. However, TIMEX3 tags with no

extent are introduced, e.g., to deal with unspecified time points, which are needed to

anchor durations. The most important attributes of TIMEX3 tags are6:

• type: defines whether the expression is of type date, time, duration, or set

• value: a normalized form of the expression

• mod: captures temporal modifiers

• quant: specifies the quantity of set expressions

• freq: specifies the frequency of set expressions

• beginpoint: anchor begin of a duration

• endpoint: anchor end of a duration

While the attribute type is newly introduced in TIMEX3, the attributes value and

mod are similar to the VAL and MOD attributes of TIMEX2. These two attributes

already capture a large part of the information of temporal expressions, and for

many expressions, the value attribute is the only attribute that is needed for

normalization. Although the different attributes and definitions of extents between

6 The details of the attributes are described in the TimeML annotation guidelines including further

attributes, e.g., to capture the function of a temporal expression in a document. For details, see

http://www.timeml.org/.

Multilingual and cross-domain temporal tagging 275

123

http://www.timeml.org/

TIMEX2 and TIMEX3 are significant, the annotations for many temporal

expressions are often very similar so that an automated conversion often works

reasonably well (see, e.g., Saquete Boro 2010).

3 Literature review

In the last few years, there have been significant efforts in developing approaches to

annotate temporal information in documents, which led to the annotation standards

of TIMEX2 and TIMEX3 as described in the previous section. In addition to

annotation guidelines, these efforts resulted in a couple of annotated corpora, and

some challenges were organized to evaluate temporal taggers on these corpora.

There were some early contests with tasks on temporal information extraction

without normalization, e.g., the MUC (Message Understanding Conference) named

entity recognition tasks in 1995 and 1997 (Grishman and Sundheim 1995; Chinchor

1997). In Sect. 3.1, we give an overview of corpora annotated with respect to the

annotation standards of TIMEX2 or TIMEX3 and competitions based on these

corpora. In Sect. 3.2, we survey existing temporal taggers by describing their

methods for the extraction and normalization tasks. Often, they are evaluated on the

presented corpora so that we are able to compare their quality.

3.1 Time-annotated corpora

There are a couple of corpora annotated with TIMEX2 or TIMEX3 tags. Based on

the TIDES TIMEX2 annotation standard, the corpora for the ACE (Automatic

Content Evaluation) time expression and normalization (TERN) contests in 2004,

2005, and 2007 were created.7 Although all ACE corpora are annotated using

TIMEX2 tags, different versions of the annotation guidelines were used. The

changes, however, are not significant. The ACE TERN 2004 training data as well as

the evaluation data released by the Linguistic Data Consortium (LDC) consist of

English news documents. The documents of the ACE 2005 and 2007 corpora are not

all from the news domain, but additionally contain conversations, discussions, and

Web blogs. Unfortunately, only the ACE 2005 training corpus has officially been

released, yet. For the evaluation of temporal taggers, a script is provided to measure

precision, recall, and f-score for the extraction and normalization tasks.8 Details

about the evaluation measures used in temporal tagging are given in Sect. 5.

The TimeBank corpus was developed during the workshop Time and Event

Recognition for Question Answering Systems (TERQAS) in 2002 as a reference

corpus for TimeML (Pustejovsky et al. 2003b). Thus, TimeBank contains TIMEX3

tags for temporal expressions, and events and temporal relations are also annotated.

The TimeBank 1.2 version released by LDC9 consists of 183 news documents.

7 The 2004 and 2005 training sets and the 2004 evaluation set are released by LDC (LDC2005T07,

LDC2006T06, LDC2010T18); see: http://www.ldc.upenn.edu/.
8 The TERN evaluation script is available at http://fofoca.mitre.org/tern.html.
9 TimeBank 1.2 is released by LDC (LDC2006T08); see: http://www.ldc.upenn.edu/.

276 J. Strötgen, M. Gertz

123

http://www.ldc.upenn.edu/
http://fofoca.mitre.org/tern.html
http://www.ldc.upenn.edu/

For the TempEval-2 competition with tasks on temporal expression, event, and

relation extraction and normalization, TimeBank was used as the underlying corpus

for the English training data. The evaluation data consist of newly annotated

documents. In addition, corpora for Spanish, Italian, French, Korean, and Chinese

were developed and are publicly available together with the used annotation

guidelines and a script for evaluation.10

The ACE corpora as well as the TimeBank and TempEval-2 corpora consist of

news and news-style documents for which the document creation time plays an

important role. These documents are relatively short and contain only a few

temporal expressions. Thus, the temporal discourse structure is very limited. These

facts motivated Mazur and Dale (2010) to create a corpus of narratives containing

more complex temporal phenomena. They developed WikiWars,11 a corpus of 22

documents containing parts of Wikipedia articles about famous wars in history.

Temporal expressions are annotated according to the TIDES TIMEX2 standard, and

the corpus is created in the ACE TERN style so that the ACE TERN evaluation

scripts can be used for evaluation.

The WikiWars corpus is the only publicly available, temporal annotated corpus

containing narratives. To be able to evaluate our multilingual temporal tagger (Sect. 4)

in more than one language and not only on news documents but also on narratives, we

developed the WikiWarsDE corpus (Strötgen and Gertz 2011).12 It contains parts of

the 22 German Wikipedia articles about the same famous wars as the English corpus.

For the annotation, we followed the suggestions of the WikiWars developers. Thus, we

used the annotation tool Callisto,13 annotated the corpus according to the TIDES

TIMEX2 standard, and published the corpus in the same style as the WikiWars corpus

and the ACE corpora. Some statistics of WikiWarsDE as well as of other publicly

available corpora are shown in Table 2. Compared to the other corpora, WikiWars and

WikiWarsDE contain long documents with many temporal expressions and thus a

complex temporal discourse structure.

3.2 Temporal taggers

As described in Sect. 2, the task of temporal tagging can be split into two subtasks,

the extraction and the normalization of temporal expressions. The extraction task is

to correctly identify temporal expressions and their boundaries. It can thus be seen

as a typical classification problem of deciding whether a token is part of a temporal

expression or not. For this, approaches range from rule-based to machine learning

strategies. The normalization of temporal expressions is to assign temporal

expressions a value in some standard format and thus it is a more challenging

10 The TempEval-2 data are available at http://timeml.org/site/timebank/timebank.html. While Temp-

Eval-2 had a task for the extraction and normalization of temporal expressions, the first TempEval

evaluation challenge concentrated on tasks for identifying temporal relations. Thus, we do not consider

the corpus of the first TempEval here.
11 WikiWars is available at http://www.timexportal.info/wikiwars/.
12 WikiWarsDE is publicly available at http://dbs.ifi.uni-heidelberg.de/heideltime/.
13 http://callisto.mitre.org/.

Multilingual and cross-domain temporal tagging 277

123

http://timeml.org/site/timebank/timebank.html
http://www.timexportal.info/wikiwars/
http://dbs.ifi.uni-heidelberg.de/heideltime/
http://callisto.mitre.org/

and complex task as described in Sect. 2.2. This task is addressed by almost all

temporal taggers in a rule-based way. In summary, existing temporal taggers use

either a combination of machine learning and rule-based techniques for the

extraction and normalization of temporal expressions or solely rule-based methods.

One of the first temporal taggers is TempEx (Mani and Wilson 2000). It is a

simple, rule-based system that uses TIMEX2 tags, although the normalization

functionality is limited. Based on this temporal tagger, GUTime was developed as

reference tool for TimeML using TIMEX3 tags.14 GUTime is one of the most

widely used temporal taggers. It is part of the TARSQI toolkit consisting of

components for the extraction of events, temporal expressions, and temporal

relationships (Verhagen and Pustejovsky 2008). GUTime has been evaluated on the

TERN 2004 training data and achieves competitive results. We detail the evaluation

results of all temporal taggers introduced in this section and compare their quality

with our temporal tagger HeidelTime in Sect. 5 since they are often evaluated on

different corpora and with respect to different evaluation measures.

The best performing system of the ACE TERN 2004 competition was Chronos

(Negri and Marseglia 2005). It uses a relatively large rule set containing 1,000 hand-

crafted rules to capture information needed for normalization. All systems of the

TERN 2004 competition performing the extraction and the normalization are rule-

based while all systems performing no normalization are machine-learning ones,

e.g., the ATEL system, which uses SVM classifiers (Hacioglu et al. 2005).

Motivated by this observation, Ahn et al. (2005a, b) raise the question whether

decoupling recognition from normalization may improve a temporal tagger’s quality

for extraction and normalization and show that decoupling might help. In addition,

it is shown that one may split the normalization task into smaller subtasks and

Table 2 Statistics of the WikiWarsDE corpus and other publicly available or released corpora. Tokens/

Timex and Timex/Document of TempEval-2 corpora for other languages are similar to English (en) and

Spanish (es) TempEval-2 corpora

Corpus Docs Tokens Timex Tokens/Timex Timex/Document

ACE04 en train 863 306,463 8,938 34.3 10.36

ACE04 en eval 192 54,614 1,828 29.9 9.52

ACE05 en train 599 259,889 5,469 47.5 9.13

TimeBank 1.2 183 78,444 1,414 55.5 7.73

TempEval2 en train 162 53,450 1,052 50.8 6.49

TempEval2 en eval 9 4,849 81 59.9 9.00

TempEval2 es train 173 58,423 1,093 53.5 6.32

TempEval2 es eval 17 4,278 91 47.0 5.35

WikiWars 22 119,468 2,671 44.7 121.41

WikiWarsDE 22 100,699 2,240 45.0 101.81

14 http://timeml.org/site/tarsqi/modules/gutime/index.html.

278 J. Strötgen, M. Gertz

123

http://timeml.org/site/tarsqi/modules/gutime/index.html.

address some of them with machine learning techniques using a cascaded approach

while only a smaller set of composition rules has to be applied (Ahn et al. 2007).

Another temporal tagger separating the tasks of extraction and normalization is

the DANTE tagger (Mazur and Dale 2009). The extraction is done using a JAPE

grammar (Java Annotation Pattern Engine), and the normalization is performed in a

rule-based manner. The system annotates temporal expressions according to the

TIMEX2 guidelines and was one of the systems that participated in the ACE 2007

competition where it achieved competitive results. The developers of DANTE point

out the challenges of normalizing temporal expressions when processing narratives

instead of news documents. They developed the first temporal annotated corpus

containing narratives, as described in the previous section (Mazur and Dale 2010).

Recently, the participants of TempEval-2 developed several temporal taggers

using the TIMEX3 annotation standard. Eight teams submitted results for temporal

tagging in English and three teams for Spanish. The other languages were not

addressed by any of the participating teams. For example, Saquete Boro (2010) used

the TERSEO tagger and a transducer to translate its TIMEX2 tags into TIMEX3

tags. This method shows that such a transformation works reasonably well. In

addition to the TempEval-2 results, UzZaman and Allen (2011) evaluate their

temporal tagger, which is based on conditional random fields, on the TimeBank

corpus and compare their results with Boguraev and Ando (2005) and Kolomiyets

and Moens (2009). While the former system is based on a cascaded finite-state

grammar, the latter uses a maximum entropy classifier. We present these evaluation

results in Sect. 5 together with our results on the different corpora.

Another important point in temporal tagging is multilinguality. Negri et al. (2006)

show that one can use automatic translations of extraction rules from one language

into another. These are then assigned to a language-independent normalization

format. Finally, the normalization can be performed for all languages in the same

way. Recently, a semi-automated translation of a TimeML annotated corpus into

another language was proposed by Costa and Branco (2010). They show that fast

porting with relatively small manual effort is possible. The annotated corpus in a new

language can then be used as training data for machine learning approaches.

4 HeidelTime

While there are a couple of temporal taggers as described in the previous section,

there is a lack of publicly available temporal taggers, which can be used for

processing different languages and domains with high accuracy in both the

extraction and the normalization of temporal expressions. Thus, for our research on

multilingual temporal information extraction and exploration (Strötgen et al. 2010;

Strötgen and Gertz 2010b), we developed HeidelTime, a temporal tagger satisfying

the following requirements:

A. Extraction and normalization should be of high quality.

B. High quality results should be achieved across domains.

C. Further languages should be integrable without modifying the source code.

Multilingual and cross-domain temporal tagging 279

123

D. The architecture should allow the integration of new modules, e.g., for

additional implicit expressions.

E. When needed, adding and modifying rules should be simple.

Although there are some promising machine learning approaches for the

extraction of temporal expressions, we developed HeidelTime as a rule-based

system for the following reasons: (1) the divergence of temporal expressions is very

limited compared to other named entity recognition and normalization tasks, e.g., the

number of persons and organizations as well as the variety of names referring to these

entities are probably infinite, (2) the normalization is hardly solvable without using

rules, (3) resources for additional languages can be added without the need of an

annotated corpus, and (4) the knowledge base can be extended in a modular way,

e.g., for adding events and their temporal information such as ‘‘soccer world cup final

2010’’ that took place on July 11, 2010. Furthermore, for the ability to easily add and

modify rules (req. E), we developed a well-defined rule syntax (see Sect. 4.1.2). As

annotation format, HeidelTime uses the TimeML annotation standard of TIMEX3

tags for temporal expressions. Nevertheless, due to the similarities between TIMEX3

and TIMEX2, the tags can be converted into TIMEX2 as well—although not all

attributes are supported. Similar to the transformation from TIMEX2 to TIMEX3

described by Saquete Boro (2010), though the other way around, we used this

property to be able to evaluate HeidelTime on corpora annotated with TIMEX2.

As a first official evaluation, we participated in the TempEval-2 task of extracting

and normalizing English temporal expressions. HeidelTime achieved the best results

for both the extraction and the normalization task (English) (Strötgen and Gertz

2010a). Although detailed evaluation results are presented later in Sect. 5, this

verifies that requirement A is satisfied. How the remaining requirements B, C, and D

are met is explained in Sect. 4.1 when describing HeidelTime’s system architecture.

Then, in Sect. 4.2, we present our UIMA-based text mining pipeline of which

HeidelTime is one component. Finally, in Sect. 4.3, we detail how HeidelTime’s

language resources were developed.

4.1 HeidelTime’s architecture

An overview of HeidelTime’s system architecture is given in Fig. 2. The most

important feature is the strict separation between the algorithmic part, i.e., the source

code, and the resources for patterns, rules, and normalization information. The

resources are organized in a modular way. When new resources are added to

HeidelTime, they are automatically loaded by HeidelTime whenever they are named

and built according to HeidelTime’s conventions. Thus, the requirement of extensi-

bility is satisfied (req. D). In addition, only the resources are language-dependent.

Thus, when integrating a new language, only these have to be adapted (req. C).15

As detailed in Sect. 3.2, temporal tagging can be split into two tasks, the extraction

and the normalization of temporal expressions. For the extraction, HeidelTime

mainly uses regular expressions that can make use of pattern resources. However,

15 Due to this feature, we were able to include Dutch language resources recently developed at Tilburg

University, see, http://dbs.ifi.uni-heidelberg.de/heideltime/.

280 J. Strötgen, M. Gertz

123

http://dbs.ifi.uni-heidelberg.de/heideltime/

other constraints can be set as well, e.g., the part-of-speech tag of a specific token in

the expression itself or before or after the temporal expression. For the normalization,

we use normalization resources containing mappings between an expression and its

value in standard format. Furthermore, linguistic clues are applied to normalize

ambiguous expressions. For example, the tense of a sentence may indicate the

temporal relation between an expression and its reference time. The difficulties of

normalizing temporal expressions in different domains were described in Sect. 2.2.

To allow cross-domain temporal tagging (req. B), HeidelTime distinguishes between

two document types: ‘‘news’’ and ‘‘narratives’’. On the one hand, all documents for

which the document creation time is crucial are summarized as ‘‘news’’, e.g., news

documents, conversations, but also documents like blog entries. On the other hand,

‘‘narratives’’ refer to documents for which the document creation time is usually

irrelevant, e.g., Wikipedia articles and all other kinds of narrative-style documents.

In addition to news- and narrative-style documents, a third type of documents exist,

namely documents in which temporal expressions cannot be normalized to real

points in time but to a ‘‘document-internal’’ timeline. This behavior is typical for

literary and scientific documents. For example, in a biomedical text, when describing

clinical trials there are often expressions such as ‘‘three days later’’ for which the

reference time is not a real date but a ‘‘time point zero’’ in the document, i.e., such

documents have their own time frame. The temporal expression ‘‘three days later’’

could thus be normalized to ‘‘three days after point zero’’. While the present version

of HeidelTime supports normalization strategies for news- and narrative-style

documents, we are currently working on integrating the additional normalization

strategy for ‘‘closed time frame’’ documents.

In the following, we present HeidelTime’s resources (Sect. 4.1.1), describe the

syntax of the rule language (Sect. 4.1.2), and explain HeidelTime’s algorithm for

temporal tagging of documents (Sect. 4.1.3).

4.1.1 HeidelTime’s resources

HeidelTime’s resources are read and interpreted by the algorithm and organized in a

directory structure. For every language, three directories are used, representing the

three resources (1) pattern resources, (2) normalization resources, and (3) rule

resources. Within these directories, every resource item is represented as a file in

which one can easily modify the resource or include comments and examples

without influencing the resource itself. In the following, we describe the three

resources in detail:

Fig. 2 HeidelTime’s system architecture with algorithm (source code) and resources

Multilingual and cross-domain temporal tagging 281

123

• Pattern resources: Pattern resources are used to create regular expressions,

which can be accessed by every rule. This allows to use category names instead

of listing all items every time the category is needed in a rule. For example,

there are patterns for month names, names of weekdays, and number words. The

pattern resource files contain one disjunct per line and the regular expression is

built by HeidelTime’s resource interpreter when reading the resources.

Figure 3a shows examples of pattern resource files, and Fig. 3c (upper part)

how they are translated by the resource interpreter.

• Normalization resources: Normalization resources contain normalized values of

expressions included in the pattern resources. These values often correspond to

the ISO standard for temporal information. They are used when HeidelTime

assigns a value to a temporal expression, i.e., when interpreting the temporal

expression. The normalization resource files are read by HeidelTime’s

resource interpreter, and for every file, a hash map is created. The files

contain one key/value pair in each line. An example of a normalization

resource file is given in Fig. 3b. How it is used in HeidelTime is shown in the

lower part of Fig. 3c.

• Rule resources: The rule resources contain the rules for the extraction and the

normalization of temporal expressions. For every type (date, time, duration, and

set), there is one file. In the extraction part and the normalization part of the

rules, one can use the pattern resources and the normalization resources,

respectively. In addition, one can define further constraints, such as specific part-

of-speech tags at a specific position, or modify the extent of a temporal

expression. Similar to the other resources, the rule resources are read by

HeidelTime’s resource interpreter and hash maps are created for the extraction,

the normalization, and for all further constraints. However, due to the

complexity, the details of the rule resources and the syntax of the rule language

are explained in Sect. 4.1.2.

The strict separation between the source code and the resources as well as the

directory structure of the resources allow the easy integration of new languages to

HeidelTime. Additional modular extensions can be integrated by adding further

(a) (b) (c)

Fig. 3 Pattern resource files for different expressions for month names and numbers (a) and
normalization resource file for month expressions (b). (c) represents how their information is used in
HeidelTime after being read and translated by HeidelTime’s resource interpreter

282 J. Strötgen, M. Gertz

123

extraction and normalization resources, e.g., for event expressions, which can be

mapped to some point or interval in time. While the pattern and normalization

resources can be created as described above, the rules are developed according to

the syntax of the rule language, which is described next.

4.1.2 HeidelTime’s rule syntax

In general, HeidelTime considers every temporal expression as a three-tuple

tei ¼ hei; ti; sii; with the expression itself (ei), the type of the expression (ti, with

ti 2 fdate; time; duration; setg), and the normalized semantic attributes of the

expression (si). Note that si does not only consist of the TIMEX3 attribute value, but

of all attributes that are subject to normalization, e.g., the mod attribute. However,

for better readability, we start explaining HeidelTime’s rule syntax with the focus

on the value attribute.

The goal of HeidelTime is, for each temporal expression tei in a document, to

identify the expression ei and its type ti and to correctly normalize its semantics si.

For this, we developed a rule syntax according to which all rules have to be

specified in the rule resources. While the rules are written in separate files, the

source code only needs to know how to read and interpret the rules. A single rule

has to contain the following components:

• RULENAME: Assigning a name to each rule allows to retrace which rule

extracted which temporal expression. This is useful for several tasks, e.g.,

calculating statistics of the occurrences of different realizations of temporal

expressions, and performing a detailed error analysis and improving rules.

• EXTRACTION: Every rule contains an extraction part describing the regular

expression pattern that has to be matched. In this part, one can use the

pattern resources described above. In addition, one may use parentheses to

group parts of the expression, which is important for the normalization of the

expressions.

• NORM_VALUE: This part defines the normalized value of an expression. One

can use the normalization resources described in the previous section and refer

to parts of an expression using the groups defined in the extraction part of the

rule. In addition, the following functions can be applied:

– SUBSTRING(x,i,j): returns a substring of the string x starting at character

position i and having the length j.

– LOWERCASE(x): converts all characters of the string x to lower case.

– UPPERCASE(x): converts all characters of the string x to upper case.

– SUM(x,y): adds the integer y to the integer x.

The three components rulename, extraction, and norm_value are required and

thus part of every rule. To access the pattern resources in the extraction part and the

normalization resource in the norm_value part, we use the percent sign (%). For

example, to access the pattern resource reMonthLong (see Fig. 3a), one writes

‘‘%reMonthLong’’ in the extraction part of a rule. To distinguish between resources

Multilingual and cross-domain temporal tagging 283

123

and functions in the norm_value part, function words are surrounded by percent

signs, e.g., ‘‘%LOWERCASE%(x)’’.

An example for a simple rule, which extracts date expressions such as ‘‘January

25, 2009’’ or ‘‘March 11, 1999’’ and normalizes their values according to the

TimeML standard format (2009-01-25 and 1999-03-11 for the two examples), can

be written as:

RULENAME=‘‘date_r1’’,

EXTRACTION=‘‘%reMonthLong %reDayNumber, %reYear4Digit’’,

NORM_VALUE=‘‘group(3)-%normMonth(group(1))-%normDay(group(2))’’

Note that every pattern resource in the extraction part of the rule counts as one

parenthesis pair for the group function. Thus, group(1), group(2), and group(3) refer

to reMonthLong, reDayNumber, and reYear4Digit, respectively. To allow for

similar expressions to be matched with the same rule, one can easily extend the rule

to match abbreviated month names (reMonthShort) and ordinal numbers

(reDayNumberTh):

RULENAME=‘‘date_r1’’,

EXTRACTION=‘‘(%reMonthLong|%reMonthShort) ’’ ?

‘‘(%reDayNumberTh|%reDayNumber), %reYear4Digit’’,

NORM_VALUE=‘‘group(7)-%normMonth(group(1))-%normDay(group(4))’’

For some linguistic phenomena, one needs to specify further constraints to

correctly extract and normalize temporal expressions. For this, we define the

following parts that can be added to a rule.

• POS_CONSTRAINT(group(x):y:): the part of speech tag of the group x of the

matched expression must be equal to y.

• OFFSET(group(x)-group(y)): instead of extracting the complete matched

expression as temporal expression, the extent starts with the beginning of group

x and ends with the end of group y of the matched expression.

• NORM_MOD: the attribute mod is defined here.

• NORM_QUANT: the attribute quant is defined here.

• NORM_FREQ: the attribute freq is defined here.

To correctly normalize some expressions, in addition to the value attribute of a

temporal expression the attributes mod, quant, and freq have to be set according to

the normalization standards. The parts of a rule norm_mod, norm_quant, and

norm_freq are used to set the values of these attributes of a temporal expression in

addition to the value attribute. All the functions defined for the norm_value part (see

above) can be used here as well. To clarify the use of these further parts of a rule, we

give example rules to change the extent, to normalize further attributes, and to set a

part-of-speech constraint.

284 J. Strötgen, M. Gertz

123

RULENAME=‘‘date_r2’’,

EXTRACTION=‘‘%reYear4Digit(-| and)%reYear2Digit’’,

NORM_VALUE=‘‘%SUBSTRING%(group(1),0,2)group(3)’’,

OFFSET=‘‘group(3)-group(3)’’

RULENAME=‘‘date_r3’’,

EXTRACTION=‘‘%rePartWords([]?)%reYear4Digit’’,

NORM_VALUE=‘‘group(3)’’,

NORM_MOD=‘‘%normPartWords(group(1))’’

RULENAME=‘‘date_r1_negative’’,

EXTRACTION=‘‘%reYear4Digit ([\S]?)’’,

NORM_VALUE=‘‘REMOVE’’,

POS_CONSTRAINT=‘‘group(2):NNS:’’

The rule date_r2 matches expressions such as ‘‘1990–1995’’ and extracts the

temporal expression with the extent ‘‘95’’ for which the value is set to ‘‘1995’’. The

normalization is done using the substring function in the norm_value part of

the rule. Without using the offset part of the rule, the whole expression

‘‘1990–1995’’ would wrongly be extracted as one temporal expression.

In the extraction part of the rule date_r3, the pattern resource rePartWords is

used. It contains expressions such as ‘‘the beginning of’’, ‘‘the end of’’, and ‘‘mid-’’

and their normalized values are defined in the normPartWords resource. This rule

extracts expressions like ‘‘mid-2002’’ and ‘‘the beginning of 1999’’ and normalizes

their values to 2002 and 1999, respectively. In addition, the mod attribute is

normalized as defined in the normPartWords resource. In these examples, the mod
attributes are ‘‘MID’’ and ‘‘START’’, respectively.

The rule date_r1_negative is an example of a negative rule. Negative rules are

used to prevent phrases to be matched as temporal expressions. For example, a

simple rule with the extraction part being ‘‘%reYear4Digit’’ matches every four

digit number in a text. Although a four digit number often refers to a year,

sometimes it is used as a numeral for a count noun. In such cases, one wants that

four digit number to be blocked for the positive rule. This task is performed by the

rule date_r1_negative. It extracts a four digit number followed by an arbitrary

token. However, this arbitrary token must have the part-of-speech tag ‘‘NNS’’ as

defined by the pos_constraint part of the rule. A part-of-speech tagger assigns the

‘‘NNS’’ tag to plural nouns. Thus, this rule extracts phrases such as ‘‘2000

soldiers’’ or ‘‘1900 miles’’. The value ‘‘REMOVE’’ is assigned to such expressions,

which is interpreted by the algorithm as just defined. The details of how the

algorithm handles negative rules and the ‘‘REMOVE’’ value are described in the

next section.

Note that the rule date_r1_negative may wrongly match expressions that refer to

a year, e.g., in ‘‘the 2000 celebrations’’ or ‘‘the 2005 treaties’’. Without further

knowledge, solving these ambiguity problems is a tough challenge. The expressions

Multilingual and cross-domain temporal tagging 285

123

could either refer to 2000 different celebrations and 2005 different treaties,

respectively, or to the year 2000 celebrations and the treaties concluded in the year

2005.

Using the rule syntax described so far, it is possible to extract and normalize

temporal expressions that are explicitly mentioned in the text. Implicit expressions

can already be extracted as well if the required resources for the normalization are

available. However, as mentioned in Sect. 2.2, temporal information is often

expressed in an underspecified way and thus relative to other expressions. While

the extraction part is similar to the ones for explicit expressions, the normalization

has to be performed differently. For this, we set the values to expressions starting

with ‘‘UNDEF’’. Depending on the type of text that is processed (news or

narratives) and the characteristics of the temporal expression, the reference time is

determined. While the details for this normalization are explained in the next

section, the syntax for the underspecified normalization is defined according to

one of the formats

• UNDEF-%normUnit(x)-REST

• UNDEF-(this|next|last)-%normUnit(x)-REST

with normUnit containing normalized values of expressions such as day, month, and

year. ‘‘REST’’ represents the rest of the temporal expression, which is already

normalized or might be empty. The first case is used if the relation to the reference

time is unknown, e.g., in phrases like ‘‘In August’’. Here other methods have to be

used to identify the relation to the reference time. The second case is used if the

relation is known. For example, ‘‘last month’’ gets the value ‘‘UNDEF-last-month’’.

In addition, in the second case, ‘‘REST’’ may represent a calculation function of the

form ‘‘-(MINUS|PLUS)-y’’. Two example rules for extracting and normalizing

relative temporal expressions using such a calculation function are:

RULENAME=‘‘date_r4’’,

EXTRACTION=‘‘([\d]?) %reUnit ago’’,

NORM_VALUE=‘‘UNDEF-this-%normUnit(group(2))-MINUS-group(1)’’

RULENAME=‘‘date_r5’’,

EXTRACTION=‘‘(%reMonthLong|%reMonthShort)’’ ?

‘‘(%reDayWordTh|%reDayNumberTh|%reDayNumber)’’

NORM_VALUE=‘‘UNDEF-year-%normMonth(group(1))-%normDay(group(4))’’

The rule date_r4 matches expressions like ‘‘10 months ago’’ and normalizes them to

underspecified values. For the given example, the value is set to ‘‘UNDEF-this-

%normUnit(month)-MINUS-10’’, which results in ‘‘UNDEF-this-month-MINUS-

10’’. The rule date_r5 matches expressions such as ‘‘December 15th’’ and sets the

value, for this example, to ‘‘UNDEF-year-%normMonth (‘‘December’’)-%norm-

Day(‘‘15th’’)’’, which results in an underspecified value of ‘‘UNDEF-year-12-15’’.

286 J. Strötgen, M. Gertz

123

The final values for such expressions are then calculated internally in HeidelTime’s

disambiguation phase, as described in the next section.

4.1.3 HeidelTime’s algorithm

As show in Fig. 4, HeidelTime expects as input part-of-speech tagged sentences and

user-specified parameters defining which types of expressions are to be annotated

(parameter annotate) and which language and domain are used (parameters lang and

domain, respectively). In an initialization phase, the parameters are read (line 1) and

the resources of the corresponding language are interpreted by HeidelTime’s

resource interpreter (line 2) as described in Sect. 4.1.1. Then, HeidelTime performs

the extraction and normalization of temporal expressions by running the following

phases: (1) the extraction phase, (2) the normalization phase, (3) the disambiguation

phase, and (4) the cleaning phase. In Fig. 4, these phases are called in lines 6, 7, 9,

and 10, respectively. The extraction and normalization phases are called for every

sentence (line 4) and for every annotation type (line 5).

During the extraction phase, the extraction parts of the rules are searched in the

sentences. During the normalization phase, the—possibly underspecified—normal-

ized values are assigned to the extracted expressions. In the previous section, we

detailed the syntax of the rule language and described that further constraints

(pos_constraint, offset) may have to be satisfied in the extraction phase, and further

attributes (mod, freq, and quant) may have to be normalized in the normalization

phase.

After all sentences are processed, underspecified and ambiguous temporal

expressions are subject to analysis in the disambiguation phase. For this, all

extracted expressions, which are part of other temporal expressions, are removed.

For example, in the phrase ‘‘. . . On January 24, 2009, . . .’’, HeidelTime’s rules

match the expressions (1) ‘‘January 24, 2009’’, (2) January 24, (3) January, and (4)

‘‘2009’’, but all expressions except the longest one (i) are removed. If overlapping

expressions are extracted, e.g., ‘‘late Monday’’ and ‘‘Monday morning’’, only the

first expression is currently annotated. However, in addition, the user is informed

about overlapping expressions since these indicate that the rules could be improved.

In the given example, a rule for expressions such as ‘‘late Monday morning’’ should

Fig. 4 HeidelTime’s algorithm reading parameters and resources

Multilingual and cross-domain temporal tagging 287

123

be added to the rule set. In the next step, all remaining temporal expressions are

searched for values starting with ‘‘UNDEF’’. For these expressions, the reference

time and the relation to the reference time are determined, and the values are

disambiguated according to this information. In the cleaning phase, all invalid

temporal expressions are deleted, i.e., expressions identified by negative rules and

thus expressions with the value ‘‘REMOVE’’. Since all shorter expressions within

these expressions have already been deleted in the disambiguation phase, the task of

negative rules to block parts of expressions for other rules is correctly performed in

the cleaning phase.

To further detail the disambiguation phase, we use the two examples of Fig. 1. In

the news document (Fig. 1a) and the narrative document (Fig. 1b), the expression

‘‘December’’ and ‘‘December 25‘‘ are normalized to ‘‘UNDEF-year-12’’ and

‘‘UNDEF-year-12-25’’ in the normalization phase, respectively. During the

disambiguation phase, these have to be fully specified. For narrative documents,

HeidelTime assumes the last mentioned temporal expression of the type date to be

the reference time. Thus, the value of the expression ‘‘December 25’’ is correctly

normalized to ‘‘1979-12-25’’. For news documents, HeidelTime assumes the

document creation time to be the reference time. Thus, the relation to the document

creation time has to be identified using the tense information of the sentence. This is

done by determining the part-of-speech tags of the verbs in the sentence. If past

tense is determined, the year of the value will be set to the year of the previous

December of the document creation time. If present or future tense is identified it

will be set to the year of the December after the document creation time. In the

example, the document creation time is ‘‘1998-04-28’’, i.e., the value of the

expression ‘‘December’’ is correctly disambiguated to ‘‘1997–1912’’ since the tense

of the sentence (the verb ‘‘cited’’) is determined as past tense.

4.2 HeidelTime as UIMA component

Due to the need for linguistic preprocessing such as sentence splitting and part-of-

speech tagging and due to the fact that temporal tagging should be done independent

of the format of the input data, it is useful to have HeidelTime as one component of

a document processing pipeline.

For this, we use the Unstructured Information Management Architecture

(UIMA), a system architecture to process unstructured content of any type (e.g.,

text or images).16 Using UIMA, it is possible to combine different tools originally

not built to be used together since all components are based on the same data

structure, the Common Analysis Structure (CAS). In addition, the types of

annotations that may be added to a CAS object are defined in a type system. For

example, a type Sentence may contain the start and end position of a sentence in the

document, while a type token may additionally contain a part-of-speech feature.

Due to these characteristics of UIMA, we can use existing components for linguistic

preprocessing without running into integration problems—an often occurring

16 See http://uima.apache.org/.

288 J. Strötgen, M. Gertz

123

http://uima.apache.org/.

problem due to incompatibilities and heterogeneous tools. In addition, this allows

other users of HeidelTime to use other tools for preprocessing.

In Fig. 5, our document processing pipeline is illustrated. In general, a UIMA

pipeline consists of three types of components: A Collection Reader to read the

input data from an arbitrary source, to initialize a CAS object for every document

subject to analysis, and to set the document text, i.e., the text that is directly

processed by the next type of components, the Analysis Engines. These perform the

analytical part in the processing pipeline, i.e., analyze the documents, extract

information, and add annotations of the extracted or derived information to the CAS

objects. Finally, CAS Consumers perform the final processing such as writing

annotations into a database or writing files containing annotations extracted by the

Analysis Engines.

We developed a Collection Reader to read the ACE TERN style input data.17

This ACE TERN Reader can be used to access the ACE TERN corpora, the

WikiWars and WikiWarsDE corpora, and the TimeBank corpus. As described in

Sect. 3.1, the WikiWars corpus is made publicly available in the TERN format as is

our WikiWarsDE corpus. In addition, we converted the TimeBank corpus into this

format to be able to run the ACE TERN scripts for evaluation of this corpus as well.

The ACE TERN Reader sets the document text as well as the document creation

time. The format of the TempEval-2 corpus differs from the TERN format and, in

addition, sentence and token annotations are directly provided. Since this

information is used by the official TempEval-2 evaluation scripts, one should use

the provided sentence and token information when evaluating a temporal tagger on

the TempEval-2 corpus. For this, we developed the TempEval-2 Reader, which

annotates sentence and token information in addition to the document text and the

document creation time. Thus, when processing TempEval-2 documents the

Analysis Engines Sentence Splitter and Tokenizer are not applied while they are

used when ACE TERN style data is processed. In both cases, the Part-of-Speech
Tagger and HeidelTime are used before the CAS Consumers ACE TERN Writer or

TempEval-2 Writer are applied to create result files in the ACE TERN or TempEval-

Fig. 5 Components of the UIMA-based text mining pipeline showing three workflows: Processing of
ACE TERN style documents (black), TempEval-2 style documents (dark gray), and other data with other
goals than temporal tagging evaluation (light gray)

17 Our UIMA components as well as conversion scripts described in this section are available at

http://dbs.ifi.uni-heidelberg.de/heideltime/.

Multilingual and cross-domain temporal tagging 289

123

http://dbs.ifi.uni-heidelberg.de/heideltime/

2 format, respectively. These files can directly be used to run the official evaluation

scripts provided by the organizers of the competitions.

In addition to the ACE TERN workflow (black) and the TempEval-2 workflow

(dark gray), a general workflow is depicted in Fig. 5 (light gray). This workflow

demonstrates that independent of the format or type of the original documents, the

tasks of sentence splitting, tokenization, part-of-speech tagging, and temporal

tagging are always performed in the same way. Only the Collection Reader depends

on the source. Of course, further analysis engines can be added to the pipeline and

CAS Consumers are used depending on the tasks that one wants to perform

afterwards. For example, we built a system called TimeTrails for the exploration of

events in documents based on the spatial and temporal information occurring

together in the sentences of documents. For this, we run our pipeline using a

Collection Reader that crawls Wikipedia articles. Then, the Analysis Engines are

applied as shown in Fig. 5. Additional Analysis Engines are used for geo-tagging

and the extraction of co-occurrences of temporal and spatial expressions. Finally, a

CAS Consumer writes all extracted pairs of spatial and temporal expressions and

thus all events into a database, which is used as knowledge base for the visualization

and exploration components of TimeTrails (Strötgen and Gertz 2010b).

In summary, using HeidelTime as a UIMA component allows users to perform

all kinds of tasks that deal with temporal information extracted from documents.

Additionally, existing or newly developed components can be integrated into the

pipeline without running into any integration problems. In our case, for linguistic

preprocessing, we use the sentence splitter, tokenizer, and part-of-speech tagger

components of the UIMA DKPro repository (Gurevych et al. 2007) with the part-of-

speech tagger being a wrapper for the TreeTagger (Schmid 1994). We selected these

components due to their applicability to multiple languages. Of course, these

components can be replaced by other tools performing the same tasks.

4.3 Resource development process

In this section, we describe the resource development process for HeidelTime’s

English and German resources. In the context of TempEval-2, we developed

HeidelTime’s first version of English resources using the TempEval-2 training data,

which corresponds to the TimeBank corpus (Verhagen et al. 2010). We developed a

precision- and a recall-optimized rule set, but later dropped the recall-optimized rule

set. For processing narrative-style documents, we then added the second normal-

ization strategy to HeidelTime and adapted the pattern, normalization, and rule

resources. However, these modifications were not performed using an annotated

corpus but in the context of our work on spatio-temporal document exploration

(Strötgen and Gertz 2010b). For this, we manually checked the results on some

Wikipedia articles. The result of this work corresponds to the current version of

HeidelTime’s English resources. Thus, for the development of the English resources

we did not use any of the other temporally annotated corpora, which are used for the

evaluation described in the next section.

290 J. Strötgen, M. Gertz

123

HeidelTime’s German resources were developed after the English ones and we

started with translating the English pattern and normalization resources as well as

the English words directly occurring in the English rules. Then, for our work on

multilingual document similarity (Strötgen et al. 2011), we used some German

Wikipedia articles to improve the German rules. However, at this point in time, we

had not yet developed WikiWarsDE, and thus, we did not use the WikiWarsDE

corpus for the development of the German resources. Since the normalization

strategies, the rule syntax, and the English resources were already available, the

development of the German resources was straightforward and took only a few

days.

Since making HeidelTime publicly available, we keep on receiving feedback

with suggestions on how to improve the rules. We will regularly update

HeidelTime’s resources to further improve HeidelTime’s quality for extracting

and normalizing temporal expressions on different domains. In the next section, we

present the evaluation results of the current version of HeidelTime.

5 Evaluation

After describing evaluation measures in Sect. 5.1, we present the evaluation results

for HeidelTime on publicly available corpora in Sect. 5.2. We also give the results

of the temporal taggers described in Sect. 3.2 on these corpora. This allows to

compare the quality of HeidelTime with existing systems. As described in the

previsous section, we did not optimize HeidelTime’s resources to the different

corpora. Besides adding the timestamp formats used in the corpora as document

creation times, we did not use the evaluation corpora to develop HeidelTime—

except the TimeBank corpus, on which the TempEval-2 training data was based.

Note that HeidelTime uses TIMEX3 for annotating temporal expressions, but

except TimeBank and TempEval-2, the publicly available corpora are annotated

with TIMEX2. Due to the differences, we performed a simple conversion from

TIMEX3 to TIMEX2 similar to (Saquete Boro 2010) for being able to evaluate

HeidelTime on the TIMEX2-annotated corpora as well. In addition, we transformed

the format of the TimeBank corpus into the ACE TERN format for being able to run

the ACE TERN evaluation scripts as described in Sect. 4.2. We did not change the

TIMEX3 annotations on this corpus but directly evaluated HeidelTime’s TIMEX3

annotations.

5.1 Evaluation measures

When evaluating temporal taggers, the subtasks of extraction and normalization can

be measured separately. Although the evaluation of the normalization could include

all the attributes of the temporal expressions, we concentrate on the value (VAL)

attribute, which is the most important attribute of temporal expressions. For both

tasks, the measures of precision, recall, and f-score are widely used, e.g., the

evaluation scripts of the ACE TERN and TempEval-2 competitions calculate these

Multilingual and cross-domain temporal tagging 291

123

measures. However, while the ACE TERN script measures the scores at the

expression level, the TempEval-2 script calculates them at the token level. In

addition, when using the measures at the expression level, one can distinguish

between strict and lenient matching. While the strict match means a complete match

between the gold standard and the system’s expression, for a lenient match it is

sufficient that one single character overlaps. Precision (P), recall (R), and f-score (F)

are calculated according to the following formulas, with true positives (TP) being

the number of expressions correctly identified as temporal expression by the system,

false positive (FP) being the number of expressions wrongly identified as temporal

expressions by the system, and false negative (FN) being the number of temporal

expressions that were missed by the system:

P ¼ TP

TPþ FP
R ¼ TP

TPþ FN
F ¼ 2� P� R

Pþ R

The normalization can be evaluated either with respect to all expressions in the

gold standard or to all expressions correctly identified by the system. While the

second method is used by the ACE TERN and the TempEval-2 scripts, we argue

similar to Ahn et al. (2005b) that the first one is more meaningful. For the sake of

completeness, we give the following evaluation results for HeidelTime on all

corpora:

• lenient: extraction (lenient) only

• strict: extraction (strict) only

• value: value, based on correctly identified expressions only

• len?val: extraction (lenient) and value normalization

• str?val: extraction (strict) and value normalization

5.2 Evaluation results

As a first official evaluation, we participated in the TempEval-2 task of extracting

and normalizing temporal expressions in English documents. Here, we achieved the

best results for both the extraction and the normalization. Table 3 shows the results

of TempEval-2 separated from other evaluation results since this evaluation is done

on a token level. Thus, the results are not directly comparable to the other corpora

that are evaluated on an expression level. In addition to the value attribute, the type
attribute was evaluated. In the competition, we participated with two rule sets,

HeidelTime-1 and HeidelTime-2, a precision- and a recall-optimized rule set. The

publicly available version of HeidelTime contains only one rule set for English and

one for German. While we described the resource development process in the

previous section, some statistics on the rule sets and the number of pattern and

normalization resources are given in Table 4. The results on the TempEval-2 corpus

with the publicly available English rule set are shown in Table 3.18

In Table 5, HeidelTime’s evaluation results on the other publicly available

corpora described in Sect. 3.1 are presented. In addition, if available, evaluation

18 Results slightly differ from HeidelTime-1 due to some bug fixes.

292 J. Strötgen, M. Gertz

123

results of the temporal taggers surveyed in Sect. 3.2 are shown for comparison

purposes. On the ACE TERN 2004 training data (Table 5a), HeidelTime achieves

better results than GUTime for which only the f-scores are published. Table 5b

shows the evaluation results of some systems on the ACE TERN 2004 evaluation

corpus. The best systems participating in the challenge are Chronos (extraction and

normalization) and ATEL (extraction only). Similar results were achieved by the

cascaded machine learning approach to interpreting temporal expressions (ARR).

The results of the TERSEO system indicate that an automatic rule translation works

reasonably well since this system uses automatic rule translation (TERSEO-1) and,

in addition, automatically extracted rules from an annotated corpus (TERSEO-2).

Three taggers were evaluated on the TimeBank-1.2 corpus (Table 5d), although

only evaluation results for the extraction were given. HeidelTime achieves better

results than all the other three taggers. Furthermore, we present results for the

normalization and the combination of extraction and normalization demonstrating

the high quality of HeidelTime’s normalization approach.

The developers of the WikiWars corpus evaluated their temporal tagger

DANTE on the ACE TERN 2005 training data (Table 5c) and the WikiWars

corpus (Table 5e) with two rule sets. On both corpora, HeidelTime significantly

Table 3 Results of TempEval-

2 (Verhagen et al. 2010) and

HeidelTime’s publicly available

version

P R F Value Type

HeidelTime-1 90 82 86 85 96

HeidelTime-2 82 91 86 77 92

TRIOS 85 85 85 76 94

TRIPS 85 85 85 76 94

TipSem 92 80 85 65 92

Edinburgh 85 82 84 63 84

KUL Run2 85 84 84 55 91

USFD2 84 79 82 17 90

TERSEO 76 66 71 65 98

HeidelTime 90.7 86.0 88.3 86.0 96.0

Table 4 Number of rules and

resources of HeidelTime’s

publicly available version

Rules English German

Date 59 48

Time 20 8

Duration 22 17

Set 13 8

Negative rules 12 12

Total 126 93

Resources English German

Pattern 27 27

Normalization 16 16

Multilingual and cross-domain temporal tagging 293

123

Table 5 Evaluation results of HeidelTime and other taggers on different corpora

(a) Results on ACE TERN 2004 training data

Lenient Strict Value Len?val Str?val

P R F P R F P R F P R F P R F

GUTimea 85 78 82

HeidelTime 94.5 80.5 86.9 85.7 73.0 78.8 85.2 85.4 85.3 80.5 68.6 74.1 75.2 64.1 69.2

(b) Results on ACE TERN 2004 evaluation data

Lenient Strict Value Len?val Str?val

P R F P R F P R F P R F P R F

Chronosb 97.6 88.0 92.6 88.5 79.8 83.9 87.5 87.0 87.2

ATELc 97.8 89.4 93.5 91.9 84.0 87.8

ARRd 92.9 81.3 86.7 87.8 76.9 81.9 91.0 88.7 89.9

TERSEO-1e 67.3 72.8 69.9 77.0 62.0 69.0 75.7 73.5 74.6

TERSEO-2f 95.4 78.6 86.2 68.7 56.7 62.1 68.6 70.9 69.8

(c) Results on ACE TERN 2005 training data

Lenient Strict Value Len?val Str?val

P R F P R F P R F P R F P R F

DANTEg 71 87 78 53 65 58 34 42 37 30 36 33

DANTEh 88 93 90 75 79 77 63 67 65 57 60 58

HeidelTime 88.5 76.8 82.2 75.3 65.4 70.0 74.0 76.2 75.1 65.4 56.8 60.8 60.9 52.9 56.6

(d) Results on TimeBank 1.2

Lenient Strict Value Len?val Str?val

P R F P R F P R F P R F P R F

BA-05i 85.2 95.2 89.6 77.6 86.1 81.7

KM-09j 87.2 83.6 85.2 86.6 79.6 82.8

UA-11k 95.4 86.5 90.7 86.5 78.5 82.3

HeidelTime 90.7 91.5 91.1 83.7 84.4 84.1 86.2 86.2 86.2 78.3 78.9 78.6 73.5 74.1 73.8

(e) Results on WikiWars

Lenient Strict Value Len?val Str?val

P R F P R F P R F P R F P R F

DANTEl 90 75 82 42 35 38 22 18 20 19 16 17

DANTEm 98 99 99 95 95 95 59 60 59 58 59 58

HeidelTime 93.9 82.6 87.9 86.0 75.7 80.5 89.5 90.1 89.8 84.1 73.9 78.7 79.6 70.0 74.5

294 J. Strötgen, M. Gertz

123

outperforms DANTE’s initial rule set in the extraction and the normalization tasks.

However, since we did not make any corpus-specific adaptations, DANTE with its

adapted rules achieves a much better recall. A simple error analysis on the ACE

TERN 2005 training corpus showed that there are a couple of frequently occurring

annotated expressions that are not covered by HeidelTime’s rule set, such as age

information expressions (e.g., ‘‘19’’ in ‘‘Bassem Takrouri, 19, lived . . .’’),
incomplete timestamps (e.g., ‘‘????-??-??T12:26:00’’), and simple but unspecific

expressions (e.g., ‘‘once’’, ‘‘then’’, ‘‘new’’, and ‘‘ex’’). While rules covering these

types of temporal expressions could easily be added to HeidelTime’s rule set, some

of them are not part of the TIMEX3 annotations. Note that the corpus is annotated

according to the TIDES TIMEX2 guidelines and HeidelTime is developed using

TIMEX3 annotations. In addition, as described in Sect. 4.3, we did not use the

evaluation corpora for adapting HeidelTime’s rule set at all. On the WikiWars

corpus, HeidelTime achieves much better results for the normalization than DANTE

with its adapted rules. While HeidelTime distinguishes between news and narrative-

style documents, DANTE normalizes temporal expressions independent of the

domain, i.e., using the document creation time. HeidelTime’s much better results for

the normalization indicate that there is a need to apply different normalization

strategies for news and narrative style documents.

In summary, these results demonstrate that HeidelTime achieves very good

results for the extraction and the normalization on both, the news domain and on

narratives. Finally, we evaluate HeidelTime on the German WikiWarsDE corpus

(Table 5f) to demonstrate its ability to achieve high quality results on corpora of

different languages. We cannot compare HeidelTime with any other tagger on this

Table 5 continued

(f) Results on WikiWarsDE

Lenient Strict Value Len?val Str?val

P R F P R F P R F P R F P R F

HeidelTime 98.5 85.0 91.3 92.6 79.9 85.8 87.0 87.0 87.0 85.7 74.0 79.4 82.5 71.2 76.5

a http://timeml.org/site/tarsqi/modules/gutime/index.html
b Negri and Marseglia (2005)
c Hacioglu et al. (2005)
d Ahn et al. (2007)
e Negri et al. (2006)
f Saquete Boro (2010)
g Mazur and Dale (2010) initial performance
h Mazur and Dale (2010) improved rule set
i Boguraev and Ando (2005), with lenient as identical right boundaries instead of overlap
j Kolomiyets and Moens (2009)
k UzZaman and Allen (2011)
l Mazur and Dale (2010) initial performance
m Mazur and Dale (2010) improved rule set

Multilingual and cross-domain temporal tagging 295

123

http://timeml.org/site/tarsqi/modules/gutime/index.html

corpus, but the results look very promising since they are similar to the results on

the English corpus.

6 Conclusions and ongoing work

In this paper, we presented an overview of the tasks of extracting and normalizing

temporal expressions, surveyed temporally annotated corpora and existing temporal

taggers, and introduced our multilingual temporal tagger HeidelTime. A tough

challenge in the normalization task of temporal tagging is to correctly identify the

reference time of so-called relative temporal expressions (e.g., ‘‘today’’, In

‘‘November’’). Without knowing their reference time, these expressions cannot be

normalized. Depending on the domain of the processed documents, different

strategies to determine the reference time are needed. As we showed by surveying

existing temporal taggers, there are hardly any approaches to apply temporal taggers

on other domains than the news domain. In addition, existing temporal taggers lack

the possibility to simply add rules for task-dependent temporal expressions or to adapt

a temporal tagger to a new language without modifying their source code. Motivated

by these observations, we developed our temporal tagger, called HeidelTime, a rule-

based system that strictly separates between the source code and resources like rules.

This architectural feature allows to simply (1) add or modify rules, (2) integrate new

modules, and (3) develop resources for new languages. Furthermore, HeidelTime

pursues different strategies for normalizing temporal expressions—depending on the

domain of the documents that are to be processed. Using publicly available corpora,

we were able to demonstrate the high quality results of HeidelTime on different

domains. In addition, we showed the extensibility to further languages by evaluating

HeidelTime on a newly developed corpus for German.

To further improve temporal tagging, we are currently working on adding further

clues to our normalization strategies. For example, a repeatedly occurring problem

in narratives are temporal expressions that refer to background information but do

not belong to the main plot of the narrative. Thus, when identifying these

expressions, they should not be used as a candidate for the reference time. In the

document shown in Fig. 1b, one would like to identify ‘‘1978’’ as such an

expression. By making available HeidelTime’s current version with its rule sets for

English, German, and Dutch, the newly developed corpus WikiWarsDE, and several

further UIMA components and scripts, we provide valuable contributions to the

community. Furthermore, our evaluation results are reproducible, and we are going

to maintain HeidelTime and provide the most recent versions including new rule

sets for further languages.

References

Ahn, D., Adafre, S. F., & de Rijke, M. (2005a). Extracting temporal information from open domain text:

A comparative exploration. Journal of Digital Information Management, 3, 14–20.

Ahn, D., Adafre, S. F., & de Rijke, M. (2005b). Towards task-based temporal extraction and recognition.

In G. Katz, J. Pustejovsky, & F. Schilder (Eds.) Annotating, extracting and reasoning about time
and events, Dagstuhl, Germany, no. 05151 in Dagstuhl Seminar Proceedings.

296 J. Strötgen, M. Gertz

123

Ahn, D., van Rantwijk, J., & de Rijke, M. (2007) A cascaded machine learning approach to interpreting

temporal expressions. In Proceedings of human language technologies: The annual conference of the

North American chapter of the association for computational linguistics, pp. 420–427.

Allan, J. (Ed.) (2002). Topic detection and tracking: Event-based information organization. Norwell,

MA: Kluwer Academic Publishers.

Alonso, O., Gertz, M., & Baeza-Yates, R. (2007). On the value of temporal information in information

retrieval. SIGIR Forum, 41(2), 35–41.

Alonso, O., Strötgen, J., Baeza-Yates, R., & Gertz, M. (2011). Temporal information retrieval:
Challenges and opportunities. In Proceedings of the 1st international temporal web analytics

workshop (TWAW 2011), pp. 1–8.

Boguraev, B., & Ando, R. K. (2005). TimeBank-driven TimeML analysis. In G. Katz, J. Pustejovsky, &

F. Schilder (Eds.) Annotating, extracting and reasoning about tme and events, no. 05151 in Dagstuhl

Seminar Proceedings.

Chinchor, N. A. (1997). Overview of MUC-7/MET-2. In Proceedings of the 7th conference on message

understanding (MUC 1997).

Costa, F., & Branco, A. (2010). Temporal information processing of a new language: Fast porting with

minimal resources. In Proceedings of the 48th annual meeting of the association for computational

linguistics (ACL ’10), pp. 671–677.

Ferro, L., Mani, I., Sundheim, B., & Wilson, G. (2001). TIDES temporal annotation guidelines—version
1.0.2. Technical report, The MITRE Corporation.

Ferro, L., Gerber, L., Mani, I., Sundheim, B., & Wilson, G. (2005). TIDES 2005 standard for the
annotation of temporal expressions. Technical report, The MITRE Corporation.

Grishman, R., & Sundheim, B. (1995). Design of the MUC-6 evaluation. In Proceedings of the 6th

conference on message understanding (MUC 1995).

Gurevych, I., Mühlhäuser, M., Müller, C., Steimle, J., Weimer, M., & Zesch, T. (2007). Darmstadt

knowledge processing repository based on UIMA. In Proceedings of the first workshop on

unstructured information management architecture at biannual conference of the society for

computational linguistics and language technology.

Hacioglu, K., Chen, Y., & Douglas, B. (2005). Automatic time expression labeling for english and

chinese text. In Proceedings of the 6th international conference on intelligent text processing and

computational linguistics (CICLing ’05), Springer, pp. 548–559.

Kolomiyets, O., & Moens, M.-F. (2009). Meeting tempeval-2: Shallow approach for temporal tagger. In

Proceedings of the workshop on semantic evaluations: Recent achievements and future directions

(DEW ’09), pp. 52–57.

Makkonen, J., Ahonen-myka, H., & Salmenkivi, M. (2003). Topic detection and tracking with spatio-

temporal evidence. In Proceedings of 25th European conference on information retrieval research

(ECIR ’03), pp. 251–265.

Mani, I., & Wilson, G. (2000). Robust temporal processing of news. In Proceedings of the 38th annual

meeting on association for computational linguistics (ACL ’00), pp. 69–76.

Mazur, P., & Dale, R. (2009). The DANTE temporal expression tagger. In Proceedings of the 3rd

language and technology conference, pp. 245–257.

Mazur, P., & Dale, R. (2010). WikiWars: A new corpus for research on temporal expressions. In

Proceedings of the conference on empirical methods in natural language processing (EMNLP ’10),

pp. 913–922.

Negri, M., & Marseglia, L. (2005). Recognition and normalization of time expressions: ITC-irst at TERN
2004. Technical report.

Negri, M., Saquete, E., Martı́nez-Barco, P., & Muñoz, R. (2006). Evaluating knowledge-based

approaches to the multilingual extension of a temporal expression normalizer. In Proceedings of the

workshop on annotating and reasoning about time and events (ARTE ’06), pp. 30–37.

Pustejovsky, J., Castaño, J. M., Ingria, R., Sauri, R., Gaizauskas, R. J., Setzer, A., Katz, G., & Radev, D.

R. (2003a). TimeML: Robust specification of event and temporal expressions in text. In: New

Directions in Question Answering, pp. 28–34.

Pustejovsky, J., Hanks, P., Sauri, R., See, A., Gaizauskas, R., Setzer, A., Radev, D., Sundheim, B., Day,

D., Ferro, L., Lazo, M. (2003b). The TIMEBANK corpus. In Proceedings of corpus linguistics 2003,

pp. 647–656.

Pustejovsky, J., Knippen, R., Littman, J., & Sauri, R. (2005). Temporal and event information in natural

language text. Language resources and evaluation, 39(2–3), 23–164.

Multilingual and cross-domain temporal tagging 297

123

Saquete Boro, E. (2010). ID 392:TERSEO ? T2T3 transducer. A systems for recognizing and

normalizing TIMEX3. In Proceedings of the 5th international workshop on semantic evaluation

(SemEval ’10), pp. 317–320.

Schilder, F., & Habel, C. (2001). From temporal expressions to temporal information: Semantic tagging

of news messages. In Proceedings of the ACL-2001 workshop on temporal and spatial information

processing, pp. 65–72.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the

international conference on new methods in language processing.

Strötgen, J., & Gertz, M. (2010a). HeidelTime: High quality rule-based extraction and normalization of

temporal expressions. In Proceedings of the 5th international workshop on semantic evaluation

(SemEval ’10), pp. 321–324.

Strötgen, J., & Gertz, M. (2010b). TimeTrails: A system for exploring spatio-temporal information in

documents. In Proceedings of the 36th international conference on very large data bases (VLDB

2010), pp. 1569–1572.

Strötgen, J., & Gertz, M. (2011). WikiWarsDE: A German corpus of narratives annotated with temporal

expressions. In Proceedings of the conference of the German society for computational linguistics

and language technology (GSCL 2011), pp. 129–134.

Strötgen, J., Gertz, M., & Popov, P. (2010). Extraction and exploration of spatio-temporal information in

documents. In Proceedings of the 6th workshop on geographic information retrieval (GIR ’10),

pp. 1–8.

Strötgen, J., Gertz, M., & Junghans, C. (2011) An event-centric model for multilingual document

similarity. In Proceeding of the 34rd international ACM SIGIR conference on research and

development in information retrieval (SIGIR’11), pp. 953–962.

UzZaman, N., & Allen, J. (2011). Event and temporal expression extraction from raw text: First step

towards a temporally aware system. International Journal of Semantic Computing, 4(4), 487–508.

Verhagen, M., & Pustejovsky, J. (2008). Temporal processing with the TARSQI toolkit. In Coling 2008:
Companion volume: Demonstrations, pp. 189–192.

Verhagen, M., Sauri, R., Caselli, T., & Pustejovsky, J. (2010). SemEval-2010 task 13: TempEval-2. In

Proceedings of the 5th international workshop on semantic evaluation (SemEval ’10), pp. 57–62.

298 J. Strötgen, M. Gertz

123

	Multilingual and cross-domain temporal tagging
	Abstract
	Introduction
	Temporal information in documents
	Types of temporal expressions
	Realizations of temporal expressions
	Annotating temporal expressions

	Literature review
	Time-annotated corpora
	Temporal taggers

	HeidelTime
	HeidelTime’s architecture
	HeidelTime’s resources
	HeidelTime’s rule syntax
	HeidelTime’s algorithm

	HeidelTime as UIMA component
	Resource development process

	Evaluation
	Evaluation measures
	Evaluation results

	Conclusions and ongoing work
	References

