
Efficient Anti-community Detection in Complex Networks
Sebastian Lackner

Heidelberg University

Heidelberg, Germany

lackner@informatik.uni-heidelberg.de

Andreas Spitz

Heidelberg University

Heidelberg, Germany

spitz@informatik.uni-heidelberg.de

Matthias Weidemüller

Heidelberg University

Heidelberg, Germany

weidemueller@uni-heidelberg.de

Michael Gertz

Heidelberg University

Heidelberg, Germany

gertz@informatik.uni-heidelberg.de

ABSTRACT

Modeling the relations between the components of complex sys-

tems as networks of vertices and edges is a commonly used method

in many scientific disciplines that serves to obtain a deeper under-

standing of the systems themselves. In particular, the detection of

densely connected communities in these networks is frequently

used to identify functionally related components, such as social

circles in networks of personal relations or interactions between

agents in biological networks. Traditionally, communities are con-

sidered to have a high density of internal connections, combined

with a low density of external edges between different communi-

ties. However, not all naturally occurring communities in complex

networks are characterized by this notion of structural equivalence,

such as groups of energy states with shared quantum numbers in

networks of spectral line transitions. In this paper, we focus on

this inverse task of detecting anti-communities that are character-
ized by an exceptionally low density of internal connections and a

high density of external connections. While anti-communities have

been discussed in the literature for anecdotal applications or as a

modification of traditional community detection, no rigorous inves-

tigation of algorithms for the problem has been presented. To this

end, we introduce and discuss a broad range of possible approaches

and evaluate them with regard to efficiency and effectiveness on a

range of real-world and synthetic networks. Furthermore, we show

that the presence of a community and anti-community structure are

not mutually exclusive, and that even networks with a strong tradi-

tional community structure may also contain anti-communities.

CCS CONCEPTS

•Theory of computation→Graph algorithms analysis; •Ap-

plied computing→ Physics;

KEYWORDS

community detection; graph algorithms; hierarchical clustering

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in SSDBM ’18: 30th
International Conference on Scientific and Statistical Database Management, July 9–11,
2018, Bozen-Bolzano, Italy, https://doi.org/10.1145/3221269.3221289.

ACM Reference Format:

Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz.

2018. Efficient Anti-community Detection in Complex Networks. In SSDBM
’18: 30th International Conference on Scientific and Statistical Database Man-
agement, July 9–11, 2018, Bozen-Bolzano, Italy. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3221269.3221289

1 INTRODUCTION

The expression birds of a feather flock together aptly describes the

intuition behind clustering and community detection approaches in

complex networks of interconnected vertices, which strive to group

the vertices of a network based on their shared characteristics. In

the case of social networks, such characteristics might be shared

interests, hobbies, or political convictions, and can be modeled as

vertex attributes. In many application scenarios, however, such ver-

tex labels are not available, meaning that the grouping of vertices

has to rely solely on the connectivity structure of the network. This

concept, which is known as structural equivalence, describes the
observation that similar vertices have similar neighbors, and thus

indicates that the connectivity structure within observed commu-

nities or clusters tends to be very dense. On an intuitive level, such

an interpretation of communities as clique-like substructures of the

network is meaningful in many common types of networks that

are as diverse as (online) social networks, citation and authorship

networks, or biological networks. It is thus not surprising that com-
munity detection in large complex networks has received a lot of

attention from researchers in seemingly unrelated scientific fields

in the past. The historically most established approach is the cluster-

ing of vertices into communities based on the so-called modularity
score [10, 20], which maximizes the number of internal connections
between vertices within a group, while simultaneously minimizing

the number of connections between vertices of different groups.

In contrast to these networks with predominating traditional

community structures, some networks contain communities with

diametrically opposed properties. As a trivial, bipartite example,

consider a network of customer reviews for products, which con-

tains no connections between products or between reviewers, and

can be partitioned into two sets of vertices that correspond to the

reviewers and products. More complex examples include adjacency

networks of words in natural language processing that only rarely

include connections between words with identical part-of-speech

tags, or networks of spectral line transitions in spectroscopy that

seldomly contain transitions between states suppressed by selec-

tion rules (e.g., states with the same azimuthal quantum number for

https://doi.org/10.1145/3221269.3221289
https://doi.org/10.1145/3221269.3221289

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz

electric dipole transitions). For such networks, reasonable vertex

partitions have a low number of internal edges but a high number

of external edges, and thus minimize (instead of maximize) the mod-

ularity score. In the following, we focus on these anti-communities.
In contrast to the well-researched topic of traditional community

detection, research into anti-community detection has so far been

limited to single algorithms with limited scalability and to specific

applications such as protein-protein interactions [7] or conflicts in

traditional Chinese medicine [35]. Intuitively, the task of finding

anti-community structures in a network is closely related to the

task of finding communities in the graph complement (i.e., the net-

work that is obtained by removing all existing edges and including

all missing edges). For the problem of graph partitioning, it can

also be shown mathematically that both tasks are equivalent [34],

which means that algorithms for community detection can in prin-

ciple be applied to the detection of anti-community structures. For

an illustration of this transformation, see the example in Figure 1.

However, while such a transformation is possible in theory, it is ill

advised in practice since the number of edges is typically a factor

in the runtime complexity of community detection algorithms. For

sparse input networks with n vertices and O(n) edges, the graph
complement is dense and has O(n2) edges. While an increased

memory overhead can likely be avoided by compression or by com-

puting the graph complement dynamically, the increased number of

edges still raises the runtime complexity of algorithms that rely on

the sparsity of the network to achieve their efficiency, such as the

well-established agglomerative hierarchical clustering [18]. Since

most community detection algorithms already have a loglinear or

quadratic runtime, an additional factor of n would make them pro-

hibitively expensive for use on large networks. Thus, even though

numerous algorithms exist for community detection, the majority

cannot be used to solve the inverse problem efficiently.

In this paper, we give an overview of existing methods for anti-

community detection and propose a number of novel methods,

which we evaluate on real-world networks and synthetic data sets

for runtime efficiency and anti-community detection effectiveness.

In summary, our contributions in this work are:

• Anti-community detectionmethods.Wepropose greedy

modularity minimization (GrM) and anti-modularity maxi-

mization (GrAM) methods, as well as two vertex similarity

based methods (VSA, VSD) for anti-community detection.
1

• Anti-community random network models. We adapt

the Erdős-Rényi and Barabási-Albert random graph models

to facilitate the generation of synthetic graphs with variable

community or anti-community structure.

• Novel performancemeasures.Weadapt the adjusted Rand
index and the normalized mutual information for the evalua-

tion of anti-community detection in networks with multiple

connected components.

• Comparative evaluation. We evaluate the performance

and runtime of our proposed algorithms and multiple algo-

rithms from the literature on synthetic and real data.

• Applications.We investigate the anti-community structure

of several real-world networks, including networks of spec-

tral line transitions from the field of Physics.

1
Our source code is available at https://github.com/slackner/anti-community.

Figure 1: Example graph with 12 edges and three anti-

communities (denoted by colors) and the graph complement

with the corresponding three communities and 54 edges.

The remainder of this paper is structured as follows. In Section 2,

we discuss community and anti-community detection methods in

the literature. In Section 3, we introduce our proposed algorithms

for detecting anti-communities, which we evaluate together with

the baseline algorithms in Section 4. Finally, in Section 5, we explore

the anti-community structures of real networks.

2 RELATEDWORK

Although the concept of traditional communities as groups of ver-

tices with a high density of edges within each group and a small

density of edges between different groups is intuitive, there is no

unique mathematical definition of community in the literature [8].

Thus, the output of community detection methods depends on

the used concept or algorithm. In the past, various definitions and

methods have been proposed, of which we discuss the most related

approaches in the following before giving an overview over the

few existing approaches to anti-community detection.

Community detection.Community detection is closely related

to graph partitioning, which refers to the problem of dividing a

graph into a specific number of disjoint groups of predefined sizes,

such that the cut size (i.e., the number of edges between groups) is

minimized [2, 12, 29]. The problem is especially relevant for parallel

computing and for designing circuit layouts [12]. In principle, graph

partitioning methods can be used for the purpose of community

detection but usually require that the number of groups is known in

advance, which is rarely the case for arbitrary complex networks.

On the other hand, methods that are based on the modularity
measure do not suffer from this problem. Originally introduced by

Newman and Girvan [20], the modularity has rapidly become one

of the most popular approaches to community detection since it

allows the evaluation of the quality of a partitioning in a specific

network. The first algorithm for finding community structures

based on maximizing modularity was a greedy method suggested

by Newman [18]. Other methods rely on simulated annealing [11],

genetic algorithms [14, 25, 28, 30], or spectral optimization [19].

Using modularity as a quality function entails that the algorithm

is optimizing for dense substructures in the network. In contrast,

other methods are more flexible and work for arbitrary connectivity

patterns. This applies, for example, to algorithms that are based on

the concept of structural equivalence [16], which postulates that two
vertices are structurally equivalent if they share common neigh-

bors. This idea can also be used to define similarity measures for

vertices [3], or to group vertices that have similar link patterns [15].

Similarly, stochastic block model methods try to fit a generative

https://github.com/slackner/anti-community

Efficient Anti-community Detection in Complex Networks SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

model to the network and also do not make assumptions about the

underlying structure [21, 23, 24]. Finally, community detection is

also closely related to clustering if vertices can be attributed with

(higher-dimensional) features that are used as input. For example,

hierarchical clustering algorithms can be applied to a matrix of

vertex similarities to extract the corresponding groups [8].

Anti-community detection. The term anti-community was

first used by Newman to describe the presence of approximately

bipartite or multipartite structures in networks [19]. The same

paper also introduces the idea of obtaining a (bipartite) clustering by

minimizingmodularity using spectral optimization. Intuitively, anti-

community detection in a network is closely related to community

detection in the graph complement and mathematically equivalent

for the case of graph partitioning [34].

More recently, Chen et al. proposed a new anti-modularity mea-

sure for the purpose of evaluating anti-community structures and

presented a fast label propagation algorithm. For evaluation pur-

poses, they use various bipartite networks. Similarly, Zhu et al.

presented the two heuristic methods REON and REONI, which ef-

fectively try to minimize modularity. Their algorithms are evaluated

on both bipartite and non-bipartite networks, including a network

of herbs containing information about the incompatibility of tradi-

tional Chinese medicine. Fasino et al. proposed a spectral method

for simultaneous community and anti-community detection based

on modularity minimization or maximization [7].

In addition to algorithms that are explicitly designed for anti-

community detection, several algorithms for traditional community

detection can be adapted to this purpose. These include methods

based on vertex similarity and similar link patterns, as well as

stochastic block models, which only make generic assumptions

about the structure present in the graph. In fact, by first computing

the graph complement, any community detection algorithm can be

used for this purpose and can thus be seen as a baseline.

Overall, there are only few and specialized algorithms for anti-

community detection in the literature. Computing the graph com-

plement is infeasible for large sparse graphs because the comple-

ment is dense, which leads to increased storage and runtime require-

ments. While the label propagation algorithm is indeed very fast, it

only performs well for networks with a well defined structure, as

we show in the performance evaluation. Even for vertex similarity

methods, it has not yet been investigated which similarity measures

are suitable for detecting anti-communities. In the following sec-

tion, we address these problems and present specialized algorithms

for anti-community detection.

3 MODELS AND ALGORITHMS

In this section we discuss the proposed algorithms and the under-

lying models and measures. We begin with the modularity and

anti-modularity measures that provide a basis for our greedy algo-

rithms, before we discuss the various baseline algorithms. Finally,

in Section 3.3 and Section 3.4, we introduce our novel algorithms.

Graph notation. In the following, we formalize networks as

graphs G = (V ,E) that connect a set of vertices V by a set of edges

E ⊆ V ×V . With A = [ai j], we denote the adjacency matrix of such

a graph. We say that G has m = |E | edges and n = |V | vertices.
With di B

∑n
j=1

ai j , we denote the degree of vertex vi .

3.1 Modularity and Anti-modularity

In order to distinguish between good and bad partitions of vertices,

it is useful to define quality functions that assign real numbers to

each partition of a graph. Since most real networks contain no

unique true community structure, such quality functions can be

used to compare the results of different algorithms. Furthermore,

several algorithms for community detection directly make use of

quality measures, which are used either as a stopping criterion or

for iterative improvements until a local maximum is found.

Modularity. The most popular quality function for partitions is

themodularity [20], which is based on the assumption that a random

graph does not have any community structure. If the density of

connections in a subgraph is higher than expected by pure chance,

a community structure is present. Formally, the modularity of an

undirected and unweighted graph G = (V ,E) is defined as

M B
1

2m

∑
i j

[
ai j −

didj

2m

]
δ (дi ,дj) (1)

where д = [дi] denotes the group assignments of vertices such

that the δ -function evaluates to one if дi = дj and zero otherwise.

The term didj/2m serves as a null model and contains the expected

number of edges connecting vi and vj in a random graph with

the same degree distribution. Note that the modularity (as well the

algorithms that use it) can be extended to weighted graphs.

Anti-modularity. Similar to the modularity metric, efforts have

been made to develop quality functions for the evaluation of anti-

community structures. Chen et al. introduce an anti-modularity
measure based on the observation that vertices in the same anti-

community group are often connected by paths of length two [4].

MA B
1

n

∑
i j

[n∑
k=1

aikak j −
didj

n

]
δ (дi ,дj). (2)

The δ -function serves the same purpose as above. Up to a constant

factor, the terms in the brackets are identical to the elements of the

covariance matrix of column vectors of the adjacency matrix A.

3.2 Baseline Algorithms

Due to the symmetry between communities and anti-communities,

algorithms for community detection can also be used for anti-

community detection by first computing the graph complement.

Since numerous methods for traditional community detection exist,

it is infeasible to cover all possible baseline algorithms. Thus, we

focus on the most promising and well-known approaches.

Graph complement + Modularity (GCM). The graph comple-
ment ˆG = (V , Ê) of a graph G = (V ,E) can be obtained by adding

all edges that are not present in the original graph, and by remov-

ing those that are present. Mathematically, the set of edges of
ˆG is

given by Ê B (V ×V) \ E. Using the graph complement as input,

we apply the agglomerative hierarchical clustering method proposed

by Newman [18] to detect communities in the complement that

correspond to anti-communities in the original graph.

Label propagation algorithm (LP). As a second baseline, we

use the label propagation algorithm for anti-community detection
proposed by Chen et al. [4]. The algorithm starts by assigning each

vertex to a separate anti-community, which is stored in a label

vector д = [дi]. As long as there are non-adjacent vertices vi and

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz

vj , and none of the neighbors of vi shares a label with vj , the label
vector is updated by assigning дi ← дj . The process is repeated
until the label vector converges to the final result. We implemented

the method based on the description in their paper.

Stochastic Block Model (SBM). The SBM method by New-

man and Reinert allows to estimate the number of communities in

graphs, but can also be used for anti-community detection [21]. The

approach is based on the assumption that a graph can be approxi-

mated by a block model in which each vertex is assigned to one of

k groups and edges between groups are distributed randomly. The

probability of edges between different groups is given as a proba-

bility matrix ω = [ωi j] of size k × k . The algorithm fits the block

model to the data, but does not enforce a specific type of structure.

It initializes with a random configuration (k,д) and computes the

likelihood P(k,д |A). A Monte Carlo process is then used to update

the configuration. In each step, either the parameter k or the group

assignment д is changed. When the configuration has converged,

sampling д can be used to obtain the anti-communities.

Nested Stochastic Block Model (NSBM). The SBM suffers

from underfitting, i.e., very small structures can be misinterpreted

as randomness. Modularity-based measures are affected by a similar

problem [9]. Peixoto proposed to solve this by using hierarchical

block models [23]. Here, the idea is to interpret the entries of the

probability matrix ω = [ωi j] as edge counts in a multigraph, which

itself can be described by another block model. Recursive applica-

tion of this process leads to a nested model with multiple levels.

To find the optimal configuration for a given graph, the algorithm

performs a local move at each step, e.g., choosing a new partition

for a specific level, inserting new levels, or deleting levels. The

best configuration can be obtained by sampling or maximizing the

posterior probability [24]. In our evaluation we use sampling.

3.3 Greedy Algorithms

Usingmodularity or anti-modularity, anti-community detection can

be reduced to an optimization problem. Finding the best partition

is usually NP-hard [8], meaning that the time requirement for

computing the exact solution likely grows at least exponentially

with the input size. As a result, it is common practice to use heuristic

approximation algorithms. Greedy algorithms are a special class

of approximation algorithms that make a locally optimal choice in

each step instead of searching for the global optimum.

Greedy algorithm with modularity (GrM). As pointed out

by Newman, a large negative modularity can indicate the presence

of a bipartite (or multipartite) structure [19]. This means that the

anti-community structure of a graph G can be obtained by com-

puting the partition that minimizes the modularity M(д) among

all possible partitions of V . Since computing the global optimum

is infeasible for large graphs, we propose a greedy method that

is similar to agglomerative hierarchical clustering [18]. Variations

of this method are popular due to the low computational com-

plexity. In order to find anti-communities, the modularity measure

has to be minimized instead of maximized. Although this change

seems trivial, it requires significant modifications to ensure the

algorithm’s efficiency. We discuss the algorithm’s construction in

the following. For a pseudo code description, see Algorithm 1 and

Function FindMergeM.

The original algorithm starts with n clusters, each containing a

single vertex. In each step, the algorithm loops through all edges

(vi ,vj) ∈ E of the graph and computes the new modularity after

merging the clusters containing vi and vj . This heuristic is moti-

vated by the observation that merging two clusters that are not

connected by an edge always decreases the modularity, so it is

easier (but not always equivalent) to consider onlym instead of

(n
2

)
possible merges. The merge that results in the largest modularity

increase (or smallest modularity decrease) is then performed. If the

value of the current partition is higher than the previously found

best solution, the corresponding label vector is stored. The process

is repeated until all edges are contained within a cluster. For a con-

nected graph, the algorithm stops after n − 1 merges, and there is

only a single cluster left. The algorithm then returns the partition

with the largest modularity value found. The complexity of each

step is O(m + n), and the total time complexity is O(n(m + n)).
The concept of a greedy algorithm for modularity minimization

is similar. As a starting point, n clusters containing a single vertex

are initialized. However, we are now interested in merging clusters

that are not connected by an edge to decrease the modularity. A

naive enumeration would increase the total complexity to O(n3). In-

stead, we propose an algorithm that checks all
(n
2

)
possible merges,

while keeping the complexity of the original method. For each

merge (vi ,vj) ∈ V
2
, we have to compute the modularity change

by merging the clusters containing vi and vj . The merge that leads

to the largest modularity decrease is performed afterwards. The

algorithm stops after at most n − 1 steps and returns the partition

with the smallest modularity value found during all iterations.

To compute the modularity changes δM = [δmi j] efficiently for

each merge, we keep track of a state that is updated in each step.

In the initial configuration, the modularity is given by

M =
1

2m

[
Tr(A) −

n∑
i=1

d2

i
2m

]
. (3)

Algorithm 1: GrM(A): Greedy algorithm for modularity min.

Input: Adjacency matrix A = [ai j] of size n × n
Output: Vector of vertex labels д, modularityM

1 д← empty vector of size n;

2 d ← empty vector of size n;

3 for i ← 1 to n do дi ← i; ▷ assign initial labels

4 for i ← 1 to n do di =
∑n
j=1

ai j ; ▷ compute vertex degrees

5 M ← 1

2m
∑n
i=1

(
aii − d2

i/2m
)
; ▷ compute modularity

6 s ← argsort(d); ▷ prepare index for sorted access

7 while i, j ← FindMergeM(A, d , s) do
8 M ← M + 1/m(ai j − didj/2m); ▷ update modularity

9 for k ← 1 to n do aik ← aik + ajk ; ▷ add rows

10 for k ← 1 to n do aki ← aki + ak j ; ▷ add columns

11 di ← di + dj ; ▷ update vertex degrees

12 for k where дk = j do дk ← i; ▷ update labels

13 delete row/column j from A and d ;

14 reorder s to reflect updated vertex degrees;

15 return best partition of all iterations;

Efficient Anti-community Detection in Complex Networks SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

The change for merging clusters i and j is

δmi j B
1

2m

(
ai j + aji −

didj

m

)
=

1

m

(
ai j −

didj

2m

)
, (4)

which can be simplified for vertices not connected by an edge to

δm∗i j B −
didj

2m2
. (5)

When a suitable merge is found, both the matrix A and the vector

of degrees d can be updated by adding the corresponding rows and

columns to reflect the changed connectivity.

∀k : a
(tmp)

ik ← aik + ajk

∀k : a
(new)

ki ← a
(tmp)

ki + a
(tmp)

k j

d
(new)

i ← di + dj

(6)

After the first update step, A may also contain self loops or values

greater than one. The entries that correspond to row/column j are
no longer needed and can be removed. Both the initial computation

and the updates can be performed in O(n).
The most significant difference to the original method is the

search for the best modularity change δmi j . The original algorithm

loops over all edges (vi ,vj) ∈ E, which requires O(m) time. In

this case, however, we are primarily interested in suitable merges

(vi ,vj) < E, i.e., groups that are not connected by any edges. The

search for a suitable merge is split in two steps. First, we search for

the best merge with (vi ,vj) < E. Second, we iterate over all edges
(vi ,vj) ∈ E in O(m) and check if we can find an even better merge.

The second step is trivial, so we focus on the first.

In order to solve this problem efficiently, we maintain a lookup

table s that provides an index for accessing elements of the vertex

degree vector d in sorted order, i.e., d(s1) ≥ · · · ≥ d(si) ≥ · · · ≥ d(sn).
The final goal is to enumerate productsdidj in sorted order, because
the same term also appears in the formula for modularity changes

δm∗i j in Equation 5. Up to a constant factor, the sorted entries are:

d(s1)d(s1) d(s1)d(s2) . . . d(s1)d(sn−1) d(s1)d(sn)
d(s2)d(s1) d(s2)d(s2) . . . d(s2)d(sn−1) d(s2)d(sn)
...

...
. . .

...
...

d(sn−1)d(s1) d(sn−1)d(s2) . . . d(sn−1)d(sn−1) d(sn−1)d(sn)
d(sn)d(s1) d(sn)d(s2) . . . d(sn)d(sn−1) d(sn)d(sn)

Since this matrix is symmetric, it is sufficient to consider only the

lower triangle (diagonal entries are ignored since a community

cannot be merged with itself). The relevant entries are highlighted.

While entries on the diagonal can be sorted trivially, this does

not apply to off-diagonal elements. However, it is easy to see

that marked entries greater than a specific diagonal element L =
d(si)d(si) are all located in columns < i . This allows an efficient

enumeration by looking at submatrices of increasing size. To track

which entries have already been checked for each column, a status

arrayu = [ui] is used. It contains the next element to be checked for

each column and is initialized to ui B i + 1. For each diagonal ele-

ment L = d(si)d(si), the algorithm enumerates entries d(sj)d(sk) ≥ L

with j < i and k ≥ uj . When an element is found that is smaller

than L, we can stop iterating the current column and proceed with

the next one. Merges can only be done when two clusters are not

already connected, so for each entry it is necessary to check if

Function FindMergeM(A, d , s)

Input: Adjacency mat. A = [ai j], vertex deg. d , sorted index s
Output: Best merge b = (i, j) or None

1 u ← empty vector of size n;

2 b ← None;

3 for i ← 1 to n do ui ← i + 1; ▷ assign initial state

4 for i ← 1 to n − 1 do

5 L← d(si+1)d(si+1); ▷ compute lower bound

6 for j ← 1 to i do ▷ for each column

7 while uj ≤ n do ▷ for each row

8 (k, l) ← (sj , s(uj)); ▷ get indices of next entry

9 if dkdl < L then break;

10 if b , None ∧ dkdl = L then break;

11 if akl = 0 then ▷ merge was found

12 b ← (k, l);

13 L← dkdl ;

14 break;

15 uj ← uj + 1; ▷ proceed with next row

16 if b , None then break;

17 δm ← − L
2m2

;

18 foreach (vi ,vj) ∈ E do

19 v ← 1

m
(
ai j − didj/2m

)
; ▷ compute modularity change

20 if v < δm then ▷ better merge was found

21 b ← (i, j);

22 δm ← v ;

a(si)(sj) = 0. When the first non-existing edge is found, we may

abort after making sure that no better solution exists. If the first

element in a column is less than or equal to the previously found

best solution, we simply skip it. Furthermore, we can definitely ter-

minate after processing any element that is greater than or equal to

the current lower bound L. Effectively, this step always searches for
two disconnected groups with the highest vertex degree product.

For a graph withm edges, the first non-existing edge is definitely

found by iteration kmax (or earlier), with kmax given by

kmax B

⌊
1

2

(
1 +
√

8m + 1

)⌋
≤

1

2

(
1 +
√

8m + 1

)
. (7)

This follows from the observation that at least 1/2k(k + 1) merges

have been checked until iteration k of the outer loop. The algorithm

terminates after O(
√
m) iterations of the outer loop and O(m) it-

erations of the inner loop. The number of changes of the vector

that are necessary until the non-existing edge is found is at mostm,

afterwards there are at most kmax − 1 additional state transitions

to replace the solution (one for each column). As a result, the total

complexity of the first search step is also O(m).
Overall, the initial computation of the lookup table can be per-

formed in O(n log(n)) by sorting. Searching for a suitable merge

step requires at most O(m) lookup steps. The update of the adja-

cency matrix A, the vector of degrees d and the lookup table s after
each step can be performed in O(n). Since the algorithm terminates

after at most n − 1 iterations, the total complexity is O(n(m + n)).

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz

Greedy algorithm with anti-modularity (GrAM). For our

second approach, we assume that the anti-community structure of

a graph is characterized by a global maximumof the anti-modularity

MA(д). Since computing the global optimum is infeasible for large

graphs, we propose the following greedy method. For a pseudo

code description see Algorithm 2 and Function FindMergeAM.

Given the adjacency matrix A, the first step is to compute the

squared adjacencymatrixB = [bi j]with elementsbi j B
∑
k aikak j .

The algorithm starts with n clusters containing a single vertex,

loops through all non-zero entries bi j of B and computes the anti-

modularity change by merging the two clusters containing vi ∈ V
and vj ∈ V . The merge that results in the largest gain in anti-

modularity (or the smallest anti-modularity decrease) is then per-

formed and the best solution found so far is tracked. For a connected

graph, the algorithm terminates after at most n − 1 merges when

only a single cluster is left. The result of the algorithm is the parti-

tion with the largest anti-modularity value found in all iterations.

To avoid the re-computation of the anti-modularity changes

δMA = [δmi j] at each step, we use a similar method as in the

algorithm above. In the initial configuration, where each vertex is

assigned to a separate cluster, the anti-modularity is given by

MA B
1

n

[
Tr(B) −

n∑
i=1

d2

i
n

]
. (8)

The change for merging two clusters i and j is

δmi j B
1

n

(
bi j + bji −

2didj

n

)
=

2

n

(
bi j −

didj

n

)
. (9)

When a suitable merge is found, both B and the vector of degrees

d can be updated by adding the corresponding rows and columns

to reflect the changed connectivity.

∀k : b
(tmp)

ik ← bik + bjk

∀k : b
(new)

ki ← b
(tmp)

ki + b
(tmp)

k j

d
(new)

i ← di + dj

(10)

The total execution time of the algorithm is dominated by the

time it takes to compute the squared adjacency matrix B and by the

iterative clustering algorithm. Computing the squared adjacency

matrix can be done in O(nm) by using a naive matrix multiplication

algorithm. Depending on the input data, the squared adjacency

matrix might be dense. However, even in the worst case, the clus-

tering algorithm still finishes in O(n3), which means that the total

complexity is at most O(n3).

3.4 Vertex Similarity Algorithms

While the above algorithms use modularity or anti-modularity, we
can also use a clustering based on vertex features. Here, the idea is

to define a mapping M : V → Rp of vertices to points (or feature
vectors) in a higher dimensional vector space (here, p dimensions).

The mapping is chosen in such a way that similar vertices are

mapped to points close to each other, whereas feature vectors of

unrelated vertices have a larger distance [8]. If multiple vertices

have a similar relation to other vertices in the graph, we can assume

that they form a community or anti-community, even if they are not

adjacent themselves. This concept is called structural equivalence

Algorithm 2: GrAM(A): Greedy alg. for anti-modularity max.

Input: Adjacency matrix A = [ai j] of size n × n
Output: Vector of vertex labels д, Anti-modularityMA

1 д← empty vector of size n;

2 d ← empty vector of size n;

3 B← A
2
;

4 for i ← 1 to n do дi ← i; ▷ assign initial labels

5 for i ← 1 to n do di =
∑n
j=1

ai j ; ▷ compute vertex degrees

6 MA ←
1

n
∑n
i=1

(
bii − d2

i/n
)
; ▷ compute anti-modularity

7 while i, j ← FindMergeAM(B, d) do
8 MA ← MA +

2

n
(
bi j − didj/n

)
; ▷ update anti-modularity

9 for k ← 1 to n do bik ← bik + bjk ; ▷ add rows

10 for k ← 1 to n do bki ← bki + bk j ; ▷ add columns

11 di ← di + dj ; ▷ update vertex degrees

12 for k where дk = j do дk ← i; ▷ update labels

13 delete row/column j from B and d ;

Function FindMergeAM(B, d)

Input: Squared adjacency matrix B = [bi j], vertex degrees d
Output: Best merge b = (i, j) or None

1 L← −∞;

2 b ← None;

3 foreach non-zero entry bi j do
4 v ← 2

n
(
bi j − didj/n

)
; ▷ compute anti-mod. change

5 if v > L then ▷ better merge was found

6 b ← (i, j);

7 L← v ;

and also used for many other similarity measures [16]. To obtain the

community structure, we use k-means clustering [17] and determine

the optimal number of clusters k with the silhouette score [27].
Vertex similaritywith adjacencymapping (VSA).As a start-

ing point, we group vertices that share common neighbors. This

idea is closely related to the work by Burt [3], who suggests that a

dissimilarity measure can be defined on a graph G as:

di j B

√ ∑
k,i, j

(aik − ajk)
2

(11)

The condition k , i, j ensures that edges between vertices vi and
vj do not increase the dissimilarity. Since we are looking for anti-

communities in this case, we expect that the dissimilarity increases

when two vertices in the same anti-community are connected to

each other. This allows us to simplify the formula to

dAi j B

√∑
k

(aik − ajk)
2

(12)

which is equivalent to distances in an euclidean vector space when

vertices are mapped to rows of the adjacency matrix, i.e.,

M
adj
(vi) B [ai j]j . (13)

Efficient Anti-community Detection in Complex Networks SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

After mapping vertices to their corresponding feature vectors, k-
means clustering can be used to partition the graph. This concept

is closely related to the anti-modularity measure, which is also

motivated by the idea that two vertices vi and vj belong to the

same anti-community if they have many neighbors in common.

Vertex similarity with distance mapping (VSD). Alterna-

tively, vertices can be mapped to vectors containing shortest dis-

tances to all other vertices. Assume d(vi ,vj) is the shortest distance
between two vertices vi and vj , then such a mapping function is

M
dist
(vi) B [d(vi ,v1), . . . ,d(vi ,vn)]. (14)

Based on this definition, two vertices are grouped when they have

similar distances to other vertices in the graph. In practice, we can

obtain the shortest distances between all vertices, e.g., by using the

Floyd Warshall algorithm or Johnson’s algorithm [5].

In Table 1, we provide an overview of all baseline algorithms, as

well as the proposed algorithms, along with their time complexities.

The parameter i is used to denote the number of iterations.

4 EVALUATION

From a theoretical point of view, all of the above methods are able

to detect anti-community structures. In practice, however, they

often do not agree on the same partition. Vertex similarity methods,

for example, tend to return partitions with more groups than other

methods. To evaluate which algorithm performs best under certain

conditions, we propose adapted versions of the Erdős-Rényi and
Barabási-Albert random graph models. These generative models

can be used to sample random graphs with specific community or

anti-community structure, which in turn can be used to compare

the performance and runtime between different algorithms.

4.1 Synthetic Evaluation Data

The original versions of the Erdős-Rényi and Barabási-Albert ran-
dom graph model can be used to generate graphs without commu-

nity or anti-community structure. For evaluation purposes, however,

we need graphs that contain such a structure. This can be achieved

by extending the graph models with additional parameters. For

both models, we add parameters for the number of groups k , for
the probability of connections within each group pint, and for the

probability of connections between different groups pext.
Adapted Erdős-Rényi model. The original Erdős-Rényi ran-

dom graph model allows us to construct graphs G(n,p) based on

the number of vertices n and a fixed probability p that two vertices

are connected to each other [6]. To generate graphs with group

structure, we extend this parameterization toG(n,k,pint,pext), with
k , pint, and pext as described above. The proposed algorithm works

as follows: First, all n vertices are evenly distributed between the k
groups. Afterwards, random numbers between 0 and 1 are drawn

for each edge (vi ,vj) ∈ V
2
. Edges are added only when the number

is less than pint for edges within a community, or pext for edges be-
tween different communities. Note that this is equivalent to a block
model with entries on the diagonal set to pint and remaining entries

set to pext. The pseudo code of the proposed method is shown in

Algorithm 3. The notation p(дi)(дj) is used as a shortcut for

p(дi)(дj) B

{
pint if дi = дj ,

pext otherwise.

(15)

Table 1: Overview of baseline algorithms, as well as pro-

posed methods, along with their complexity.

Algorithm Complexity

Graph complement + Greedy mod. (GCM) [18] O(n3)

Label propagation algorithm (LP) [4]
a O(n2)

Stochastic block model (SBM) [21] —

Nested stochastic block model (NSBM) [23] O(in log
2 n)

Greedy alg. with modularity (GrM) O(n2 + nm)
Greedy alg. with anti-modularity (GrAM) O(n3)

Vertex sim. with adjacency mapping (VSA)
b O(ik2n2)

Vertex sim. with distance mapping (VSD)
b O(n3 + ik2n2)

a
The publication has no thorough proof that the complexity holds for all graphs.

b
Including a linear search for the optimal number of clusters.

Algorithm 3: Adapted Erdős-Rényi random graph model

input :Parameters n, k , pint, and pext
output :Adjacency matrix A = [ai j]

1 A← empty matrix of size n × n;

2 д← empty vector of size n;

3 for i ← 1 to n do дi ←
⌊
(i−1)k
n

⌋
+ 1; ▷ assign vertex labels

4 apply random permutation to д; ▷ randomize vertex labels

5 for i ← 1 to n do

6 for j ← i + 1 to n do ▷ initialize adjacency matrix

7 ai j ← aji ←

{
1 if Rand() < p(дi)(дj),

0 otherwise.

Algorithm 4: Adapted Barabási-Albert random graph model

input :Parameters n,m0, k , pint and pext
output :Adjacency matrix A = [ai j]

1 A← empty matrix of size n × n;

2 д← empty vector of size n;

3 for i ← 1 to n do дi ←
⌊
(i−1)k
n

⌋
+ 1; ▷ assign vertex labels

4 apply random permutation to д; ▷ randomize vertex labels

5 N ← {1, . . . ,n};

6 C ← empty associative array;

7 while |N | > 0 do ▷ add vertices one after another

8 s ← RandChoice(N); ▷ select source vertex

9 remove s from N ;

10 if C is empty then ▷ compute probabilities

11 D ← {t : p(дs),(дt) for t ∈ N }; ▷ first iteration

12 else

13 D ← {t : wp(дs),(дt) for t : w ∈ C};

14 for t inWeightedRandSample(D,m0) do

15 C[t] ← C[t] + 1; ▷ update vertex degrees

16 ast ← ats ← 1; ▷ add undirected edge

17 remove t from N (if not done yet);

18 C[s] ← C[s] +m; ▷ update vertex degrees

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz

Figure 2: Example graph with two connected components.

Based on the connectivity pattern, both clusterings are plau-

sible, but only the left one has an ARI and NMI of one.

Adapted Barabási-Albert model. While edges are added in-

dependently in the Erdős-Rényi random graphs, the Barabási-Albert
model uses the concept of preferential attachment [1]. Intuitively,

this means that vertices with many existing edges are more likely

to receive new edges. The original model G(n,m0) takes two pa-

rameters n andm0, with n being the number of vertices. The first

m0 vertices are added to the graph immediately without any con-

nections. Afterwards, the remaining n − m0 vertices are added

one after another. Each newly added vertex establishes connec-

tions withm0 existing vertices in the graph. The edges are chosen

with probabilities proportional to the vertex degrees. To generate

graphs with community or anti-community structure, we propose

a new parameterization G(n,m0,k,pint,pext). Since the absolute

value of the probabilities does not matter (the values are normal-

ized again) we can fix one of them by imposing the additional

constraint pint + pext = 1. Similar to the Erdős-Rényi model, we

assume that each community consists of exactly n/k vertices. The

main difference compared to the original method is that, in addition

to the vertex degrees, pint and pext are also taken into account to

make certain edges more likely than others. The pseudo code of this

method is shown in Algorithm 4. Note thatWeightedRandSample

degenerates to a uniform random choice when all weights are zero.

A graph generated with this model is expected to have (n −m0)m0

edges and has only a single connected component.

4.2 Evaluation Metrics

Whenever ground-truth labels are available, they can be used to

rate the quality of the partitions that are returned by the algorithms.

In our evaluation, we use the adjusted Rand index measure as well

as the normalized mutual information measure, which are both

well-established methods for cluster analysis.

However, we find that these measures do not work as expected

when a graph hasmultiple connected components. Anti-community

detection algorithms have no information about how labels in one

component are related to labels in a different component, so there

are many different equivalent solutions to the expected partitioning.

An example of this effect is shown in Figure 2 for two possible clus-

terings of the same graph. Note that a similar situation occurs when

applying traditional community detection methods to a network

with two (or more) fully connected subgraphs. In the following, we

discuss the original measures and our proposed modifications.

Adjusted Rand Index (ARI).Assume that we want to compare

a label vector д ∈ Nn with the ground-truth label vector h ∈ Nn .
Both the Rand index and the adjusted Rand index measure are based

on counting pairs of matches. Suppose that a,b,c , and d are the

true/false positive/negative label matches when comparing all pairs

of vertices, as shown in the following table.

hi = hj hi , hj
дi = дj true positive (a) false positive (b)
дi , дj false negative (c) true negative (d)

Using these variables, the Rand index R can be defined as [26]:

R B
a + d

a + b + c + d
. (16)

The Rand index evaluates to values between 0 and 1, where 1

means that both structures are identical and labels can be bijec-

tively mapped to each other, and 0 means that they have nothing

in common. Despite its popularity, the Rand index is usually not

the preferred choice as it suffers from the problem that the score of

two random partitions is not a constant value. Moreover, the score

approaches a value of 1 when the number of clusters is increased.

The adjusted Rand index, which tries to solve these problems, is

defined as:

ARI B
R − E(R)

1 − E(R)
(17)

with E(R) B [(a + b)(a + c) + (c + d)(b + d)](a + b + c + d)−2
.

Intuitively, the normalization ensures that random matches have

an average adjusted Rand index of zero. The adjusted Rand index

has a negative value if R is smaller than the expected index. Two

clusters are identical when the ARI reaches a value of 1.

To avoid misleading results when there is no unique solution,

we propose a modification, such that only those pairs of vertices

are counted that are both part of the same connected component.

Assume ā, ¯b, c̄ , and ¯d are the true/false positive/negative label

matches when counting only pairs of vertices belonging to the

same connected component. Then the modified Rand index Rc is:

Rc B
ā + ¯d

ā + ¯b + c̄ + ¯d
. (18)

Similarly, the modified adjusted Rand index can be obtained as:

ARIc B
Rc − E(Rc)

1 − E(Rc)
(19)

with E(Rc) B [(ā + ¯b)(ā + c̄) + (c̄ + ¯d)(¯b + ¯d)](ā + ¯b + c̄ + ¯d)−2.

For graphs with a single components ARI = ARIc, otherwise the

modified measure returns a value of 1 for all plausible assignments.

Normalizedmutual information (NMI).Mutual information

describes the information (in bits) that can be obtained about one

variable from another variable, and can also be used as a similarity

measure for clusterings. Assume that X = {X1,X2, . . . ,Xr } with
Xi ⊂ V are the r distinct clusters returned by the algorithm and

Y = {Y1,Y2, . . . ,Ys } with Yi ⊂ V are the s distinct clusters based
on the ground truth labels. Further assume that there is a total of

n B
∑
i |Xi | =

∑
j |Yj | vertices. |Xi ∩ Yj | counts the number of

vertices that are in both Xi and Yj . The mutual information of X
and Y is then defined as:

I (X ,Y) B
∑
i

∑
j

|Xi ∩ Yj |

n
log

2

n |Xi ∩ Yj |

|Xi | · |Yj |
. (20)

The normalized mutual information NMI (also called symmetric
uncertainty [32]) with a value between 0 and 1 is given by

NMI(X ,Y) B
2I (X ,Y)

I (X ,X) + I (Y ,Y)
. (21)

Efficient Anti-community Detection in Complex Networks SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

Assume that a graph contains multiple connected components

C = {C1,C2, . . . ,Ct }withCi ⊂ V being the distinct connected com-

ponents of the graph. For each component, Xi = {Xi,1,Xi,2, . . . }
refers to distinct clusters returned by the algorithm and Yi =
{Yi,1,Yi,2, . . . } are the distinct clusters based on the ground truth la-
bels. We can then define a modified normalized mutual information
measure NMIc compatible with multiple connected components as:

NMIc(X ,Y) B
2

∑t
i=1
|Ci |I (Xi ,Yi)∑t

i=1
|Ci | [I (Xi ,Xi) + I (Yi ,Yi)]

. (22)

4.3 Anti-community Detection Evaluation

For both Erdős-Rényi and Barabási-Albert random graphs we have

introduced parameters pint and pext to control the probability of

edges within and between groups. To evaluate the detection of anti-

communities, we can sample graphs with certain properties, and

then verify if algorithms are able to correctly identify the contained

groups. For the following experiments, the number of vertices is

fixed to n = 30 and the number of (anti-)communities is set to

k ∈ {2, 5}. For each choice of∆p = pext−pint various random graphs

are generated and evaluated using the measures above. While ∆p =
+1 corresponds to a strong anti-community structure, ∆p = −1

represents a strong community structure. Intuitively, we expect

that algorithms perform best when |∆p | is large.
For Barabási-Albert random graphs, we can set pext = 1/2(1+∆p)

and pint = 1/2(1 − ∆p), such that pext + pint = 1. In this case we

use a fixed number of 300 runs per choice and divide the interval

∆p ∈ [−1;+1] into 100 steps. The model always generates graphs

with a single connected component, so ARI = ARIc. For Erdős-

Rényi random graphs pext and pint can be chosen independently.

Still, we find that the absolute values do not have a big influence, so

we look at the average over all possible combinations. The interval

∆p ∈ [−1;+1] is divided into 100 steps and for each choice we use

about 2000 randomgraphswith different combinations of (pint,pext).
The difference between ARI and ARIc is also negligible here because

it only has an effect when pext ≈ 0 and pint ≈ 0.

The results of the experiments are shown in Figure 3. Error bars

are omitted for the sake of readability. Nevertheless, since we are

primarily interested in the relative performance and not in exact

values, we can still draw valid conclusions. As expected, the plots

show that certain algorithms onlywork for anti-communities (GCM,

LP, and GrM), while other algorithms work for both communities

and anti-communities (SBM, NSBM, GrAM, VSA, and VSD). In a

scenario with pure cliques or multipartite structures, all algorithms

are able to achieve an adjusted Rand index of 1.

For community structures (i.e., ∆p < 0), we notice that SBM

fails first when the structure becomes more ambiguous. The nested

stochastic block modelNSBMworks better, but still performs worse

than other algorithms in this experiment. For a small number of

groups, bothVSA andGrAMwork approximately equally well. This

is surprising since GrAM uses a heuristic and is much faster than

computing an exact clustering of feature vectors as in the similarity

method. It also confirms that both methods use similar information

to decide which vertices should be grouped. The VSD algorithm is

the best method for community detection in our test. However, note

that we do not include all standard community detection algorithms

in our tests since we focus on anti-communities.

Erdős-Rényi (k=2)

Erdős-Rényi (k=5)

Barabási-Albert (k=2, m=1)

Barabási-Albert (k=2, m=5)

Figure 3: Performance evaluation of all methods on Erdős-

Rényi and Barabási-Albert random graphs.

For anti-community structures (i.e., ∆p > 0), the methods LP,

VSD, SBM, and NSBM turn out to be unreliable and produce results

that are much worse when compared to the other methods. The

actual order depends on the number of communities: for graphs

with many communities and structures close to the resolution limit

(i.e., k ∝
√
n [22]), LP performs significantly better than SBM or

VSD. This complex of problems is also what motivated the creation

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz

of the nested version NSBM. For VSD, it is not immediately clear

what causes this effect. The other methods GC, GrM, GrAM and

VSA perform approximately equally well and have the highest

performance according to our experiments. For Erdős-Rényi graphs

with many communities, VSA seems to be the preferred choice.

The fact that Barabási-Albert random graphs perform worse can

be explained by theway the graphs are constructed. For fixed param-

eters n andm0, the number of edges is always exactly (n −m0)m0.

This means that even for ∆p = ±1, the groups are only weakly

connected internally or externally, which makes the structure more

difficult to detect. Indeed, we can see an improvement when chang-

ingm0 from 1 to 5. Another difficulty is that Barabási-Albert random

graphs always consist of a single connected component, i.e., there

are always edges between different groups of vertices.

4.4 Runtime Evaluation

In the following, we take a closer look at the runtime behavior.

Although the asymptotic worst-case complexities are known, the

average case runtime is much more important in practice. Further-

more, the theoretical complexity does not give us any insight into

the runtime of a specific implementation, which also depends on

the constant factors, the processor speed, and optimizations by

the programmer or compiler. To analyze how fast the proposed

algorithms are in practice, we sample graphs from the Erdős-Rényi
random graph model and measure the runtime experimentally. We

fix the number of clusters to k = 5 and set pint = 0. For dense

graphs we set pext = 1, for sparse graphs we set

pext B
n(n

2

)
− k

(n/k
2

) . (23)

By repeating this experiment for different choices of n, we can

visualize the runtime behaviorT (n) for each of the algorithms. The

experiments were run on an Intel Xeon CPU E5-2650 v3 @ 2.3 GHz

without multithreading to ensure that the results are comparable.

The measurements are shown in Figure 4.

According to this test, LP is the fastest of all algorithms. For

sparse graphs, the proposed algorithms GrM and GrAM are slower

by a constant factor, but show a similar scaling behavior. Meth-

ods based on computing the graph complement like GCM have a

much steeper slope, which confirms that they are less suitable for

large networks. For SBM, no data could be obtained for n < 25

because the implementation consistently crashed with a segmenta-

tion fault. Even for n ≥ 25, we still encountered sporadic crashes of

the application (these measurements were omitted from the final

result). The scaling behavior of SBM looks a bit better, but it is

important to keep in mind that the algorithm uses a fixed number

of iterations. NSBM is the slowest algorithm, despite the fact that

the performance-critical parts are implemented in C++. As sug-

gested by Peixoto, maximizing the posterior probability instead of

using sampling could be used to improve the runtime, at the cost

of producing less generic results [24].

4.5 Performance Discussion

Choosing a suitable algorithm is a matter of balancing performance

and runtime constraints. If the graph is sufficiently small (e.g., if it

has less than 10
2
vertices), the runtime is not really a concern. All

Erdős-Rényi

(sparse)

Erdős-Rényi

(dense)

Figure 4: Runtime comparison of the anti-community detec-

tion algorithms on Erdős-Rényi random graphs.

algorithms terminate within at most 20 seconds. Based on the per-

formance experiments, VSA performs best on average, followed by

the greedy methods GrM and GrAM. According to our evaluation,

NSBM with sampling is the slowest of all algorithms. Nevertheless,

as can be seen in the following section, NSBM has clear advantages

for networks with a nested structure. For performance critical tasks,

or when the network is large enough, methods like GrM are more

suitable. While LP is even faster, it only provides a very imprecise

approximation when applied to complex networks. GrM can pro-

cess sparse graphs with about 10
5
vertices in less than 10

3
seconds

on a single core. Using multiple cores and parallel or distributed

computing can reduce the runtime even further. Explicit compu-

tation of the graph complement, as done by the GCM method, is

infeasible when trying to process large networks.

Based on our findings here, we discuss the detection of anti-

community structures in real networks in the following section.

5 EXPLORATORY ANALYSIS

Traditional community structures can be found in many networks,

which also helped to establish community detection as a stan-

dard tool of network science. Anti-community structures are much

harder to recognize but are nevertheless present even in community-

rich networks. To demonstrate this, we apply anti-community detec-

tion algorithms to the well-known Zachary’s karate club network.
As a second example, we apply anti-community detection algo-

rithms to a network of spectral line transitions. This shows that

anti-communities also have a use-case in the context of Physics.

Efficient Anti-community Detection in Complex Networks SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy

5.1 Zachary’s Karate Club Network

Zachary’s karate club network was created by observing the mem-

bers of a karate club in the United States [33]. Vertices in the graph

correspond to members and edges connect individuals if they also

had interactions outside of the activities of the club. The graph

contains 34 vertices and a total of 78 edges. At some point, a con-

flict between the two leaders occurred, which resulted in a fission

of the club. Zachary observed that the groups after the fission

closely matched the result of a minimum cut algorithm applied

to the original network, i.e., the groups were already present be-

fore and only weakly connected with each other. Nowadays the

network is primarily used for benchmarking community detection

algorithms [8]. The community structure of the network has been

extensively analyzed in existing work, so we focus on uncovering

the anti-community structure.

For evaluation purposes, different algorithms are applied to the

unweighted version of the network. Since there are no ground-truth

labels for anti-communities, we instead take a look at the modular-

ity and anti-modularity measures. As previously discussed, both a

small modularity and a high anti-modularity can indicate the pres-

ence of anti-community structures. The experimental results are

summarized in Table 2. Surprisingly, even SBM, which is designed

to return the most likely community structure in the network, finds

multiple anti-communities, instead of a partition into two communi-

ties. The smallest modularity is obtained by the greedy modularity

minimization algorithm GrM, the largest anti-modularity measure

by the VSDmethod. The result of the GrM algorithm is also shown

in Figure 5. Unfortunately no further information about the mem-

bers is available, so the exact meaning of the partition remains

unclear. Both leaders with the aliases Mr. Hi (vertex 1) and John A.

(vertex 34) were assigned to a single anti-community, but the same

partition also contains mixed membership from both groups.

5.2 Atomic Spectral Line Network of Helium

A network of spectral line transitions serves as our second example.

Spectral lines occur as a result of the interaction between photons

and atoms or molecules. When a photon has the right amount of

energy, it can change the energy state of the system and transfer

an electron to a higher orbital. When the system spontaneously

falls back to the original state, the same energy is re-emitted, either

as a single photon or in a cascade. The result becomes visible as

one or more emission or absorption lines, which can be measured

experimentally. A collection of such measurements has been aggre-

gated by the National Institute of Standards and Technology (NIST)

as part of the Atomic Spectra Database [13]. In the following, we

use the data set to construct a graph. Vertices are used to represent

states, and edges are added between two vertices if a spectral line

has been observed between the corresponding states. The resulting

network contains 183 vertices and 2,282 edges. In theory, networks

of spectral line transitions are fully connected. In practice, however,

many transitions are suppressed by selection rules, which follow

directly from the laws of Physics, and thus cannot be observed. Ver-

tices with similar neighbors often play similar roles in the network

and, for example, share the same quantum number.

From a physical point of view, it makes sense to group vertices

(energy states) based on three quantum numbers: orbital angular

Table 2: Modularity, anti-modularity, adjusted Rand index,

and normalizedmutual information for both real networks.

GC LP SBM NSBM GrM GrAM VSA VSD

Zachary’s karate club network

M -0.246 -0.202 -0.223 0.030 -0.249 -0.053 -0.058 0.290

MA 111.2 73.7 122.2 71.9 111.7 149.5 49.6 154.1

Atomic spectral line network

M -0.485 -0.419 -0.083 -0.049 -0.485 -0.431 -0.038 -0.050

MA 388.4 353.7 241.6 145.4 388.4 395.4 116.0 153.1

ARI 0.067 0.074 0.543 0.791 0.067 0.110 0.754 0.842

NMI 0.345 0.395 0.864 0.939 0.345 0.517 0.891 0.957

Figure 5: Anti-communities detected with the GrM algo-

rithm in the Zachary’s karate club network (denoted by cir-

cles). Colors show membership after the fission.

Parahelium

S = 0

Orthohelium

S = 1

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

ℓ = 6

ℓ = 7

Figure 6: Anti-communities detected with the VSD algo-

rithm in the spectral line network of helium (denoted by

colors). Circles show the ground-truth partition.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy Sebastian Lackner, Andreas Spitz, Matthias Weidemüller, and Michael Gertz

momentum (ℓ), total angular momentum (j), and spin (s). In the

following, such a partition is considered as ground-truth. The re-

sults for different algorithms are shown in Table 2. According to the

experiments, the smallest modularity is achieved by GrM, the high-

est anti-modularity by the GrAM algorithm. Closer investigation

shows that these methods cannot resolve the fine-grained structure

of the data set. According to both ARI and NMI, the VSD algorithm

works best, followed by NSBM. It reaches an ARI of 0.842 when

comparing the algorithm result with the ground-truth structure. A

visualization of the result is shown in Figure 6, which suggests that

we can indeed identify states with similar quantum numbers just

by analyzing the network structure. A remaining problem is that

certain states that only differ in their spin cannot be distinguished

very well. Such states are assigned to the same anti-community,

although we expect a partition into two groups.

6 SUMMARY AND OUTLOOK

In this paper, we discussed different approaches for efficient anti-

community detection in networks. We presented four novel meth-

ods and compared them to various baseline methods with respect

to their performance and runtime behavior, using adapted versions

of the Erdős-Rényi and Barabási-Albert random graph models. We

also presented modified versions of the adjusted Rand index and

normalized mutual information measures, which should be used

when evaluating partitions of graphs with multiple connected com-

ponents. Exploratory analyses of real networks showed that anti-

community structures are present even in the well-known karate
club network. For spectral line networks, anti-community detection

can be used to group states with similar quantum numbers.

Ongoing work. Many of the ideas investigated in this paper

are not limited to anti-community detection. The concepts that

we developed for the GrM algorithm, for example, can be used

to improve agglomerative hierarchical clustering techniques for

community detection. Certain methods, like GrAM and VSD, also

work surprisingly well for community detection, which we plan

to further investigate. Last but not least, it might be useful to in-

vestigate algorithms for multigraphs with both attracting (→ com-

munity) and repelling (→ anti-community) types of edges [31].

Such an approach might allow the unification of community and

anti-community detection in a single generalized concept.

ACKNOWLEDGMENTS

The authors would like to thank DavidWellnitz, Armin Kekić, Julian

Heiss, Kathinka Gerlinger, and Erich Schubert for constructive

discussions and helpful suggestions.

REFERENCES

[1] A. Barabási and R. Albert. 1999. Emergence of Scaling in Random Networks.

Science 286, 5439 (1999), 509–512. https://doi.org/10.1126/science.286.5439.509

[2] E. R. Barnes. 1982. An algorithm for partitioning the nodes of a graph. SIAM J.
Alg. Discr. Meth. 3, 4 (1982), 541–550. https://doi.org/10.1137/0603056

[3] R. S. Burt. 1976. Positions in networks. Soc. Forces 55, 1 (1976), 93–122. https:

//doi.org/10.1093/sf/55.1.93

[4] L. Chen, Q. Yu, and B. Chen. 2014. Anti-modularity and anti-community detecting

in complex networks. Inf. Sci. 275 (2014), 293–313. https://doi.org/10.1016/j.ins.

2014.02.040

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms, 3rd Edition. The MIT Press.

[6] P. Erdős and A. Rényi. 1959. On random graphs I. Publicationes Mathematicae 6
(1959), 290–297. https://doi.org/10.2307/1999405

[7] D. Fasino and F. Tudisco. 2018. A modularity based spectral method for simul-

taneous community and anti-community detection. Linear Algebra Appl. 542
(2018), 605–623. https://doi.org/10.1016/j.laa.2017.12.001

[8] S. Fortunato. 2010. Community detection in graphs. Phys. Rep. 486, 3 (2010),

75–174. https://doi.org/10.1016/j.physrep.2009.11.002

[9] S. Fortunato and M. Barthélemy. 2007. Resolution limit in community detection.

Proc. Natl. Acad. Sci. 104, 1 (2007), 36–41. https://doi.org/10.1073/pnas.0605965104
[10] M. Girvan and M. E. J. Newman. 2002. Community structure in social and

biological networks. Proc. Natl. Acad. Sci. 99, 12, 7821–7826. https://doi.org/10.

1073/pnas.122653799

[11] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral. 2004. Modularity from fluc-

tuations in random graphs and complex networks. Phys. Rev. E 70, 2 (2004), 9.

https://doi.org/10.1103/PhysRevE.70.025101

[12] B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitioning

graphs. Bell Syst. Tech. J. 49, 2 (1970), 291–307. https://doi.org/10.1002/j.1538-7305.
1970.tb01770.x

[13] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team. 2015. NIST Atomic

Spectra Database (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd
[2017, July 4]. National Institute of Standards and Technology, Gaithersburg, MD.

[14] X. Liu, D. Li, S. Wang, and Z. Tao. 2007. Effective algorithm for detecting com-

munity structure in complex networks based on GA and clustering. In ICCS.
https://doi.org/10.1007/978-3-540-72586-2_95

[15] B. Long, X. Xu, Z. Zhang, and P. S. Yu. 2007. Community learning by graph

approximation. In ICDM. https://doi.org/10.1109/ICDM.2007.42

[16] F. Lorrain and H. C. White. 1971. Structural equivalence of individuals in social

networks. J. Math. Sociol. 1, 1 (1971), 49–80. https://doi.org/10.1080/0022250X.

1971.9989788

[17] J. Macqueen. 1967. Some methods for classification and analysis of multivari-

ate observations. In In 5-th Berkeley Symposium on Mathematical Statistics and
Probability. 281–297.

[18] M. E. J. Newman. 2004. Fast algorithm for detecting community structure in

networks. Phys. Rev. E 69, 6 (2004), 5. https://doi.org/10.1103/PhysRevE.69.066133

[19] M. E. J. Newman. 2006. Finding community structure in networks using the

eigenvectors of matrices. Phys. Rev. E 74, 3 (2006), 19. https://doi.org/10.1103/

PhysRevE.74.036104

[20] M. E. J. Newman and M. Girvan. 2004. Finding and evaluating community

structure in networks. Phys. Rev. E 69, 2 (2004), 15. https://doi.org/10.1103/

PhysRevE.69.026113

[21] M. E. J. Newman and G. Reinert. 2016. Estimating the number of communities

in a network. Phys. Rev. Lett. 117 (2016), 5. Issue 7. https://doi.org/10.1103/

PhysRevLett.117.078301

[22] T. P. Peixoto. 2013. Parsimonious module inference in large networks. Phys. Rev.
Lett. 110 (2013), 5. Issue 14. https://doi.org/10.1103/PhysRevLett.110.148701

[23] T. P. Peixoto. 2014. Hierarchical block structures and high-resolution model

selection in large networks. Phys. Rev. X 4 (2014), 18. Issue 1. https://doi.org/10.

1103/PhysRevX.4.011047

[24] T. P. Peixoto. 2017. Bayesian stochastic blockmodeling. (2017), 44. https:

//arxiv.org/abs/1705.10225

[25] C. Pizzuti. 2009. A multi-objective genetic algorithm for community detection in

networks. In ICTAI. https://doi.org/10.1109/ICTAI.2009.58

[26] W. M. Rand. 1971. Objective criteria for the evaluation of clustering methods. J.
Am. Stat. Assoc. 66, 336 (1971), 846–850. https://doi.org/10.2307/2284239

[27] P. J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65. https:

//doi.org/10.1016/0377-0427(87)90125-7

[28] R. Shang, J. Bai, L. Jiao, and C. Jin. 2013. Community detection based on modu-

larity and an improved genetic algorithm. Physica A 392, 5 (2013), 1215–1231.

https://doi.org/10.1016/j.physa.2012.11.003

[29] P. R. Suaris andG. Kedem. 1988. An algorithm for quadrisection and its application

to standard cell placement. IEEE Trans. Circuits Syst. 35, 3 (1988), 294–303.

https://doi.org/10.1109/31.1742

[30] M. Tasgin, A. Herdagdelen, and H. Bingol. 2007. Community detection in complex

networks using genetic algorithms. (2007). https://arxiv.org/abs/0711.0491

[31] V. A. Traag and J. Bruggeman. 2009. Community detection in networks with

positive and negative links. Phys. Rev. E 80, 3 (2009), 6. https://doi.org/10.1103/

PhysRevE.80.036115

[32] I. H. Witten and E. Frank. 2005. Data Mining: Practical machine learning tools and
techniques, 2nd Edition. Morgan Kaufmann.

[33] W. W. Zachary. 1977. An information flow model for conflict and fission in small

groups. J. Anthropol. Res. 33, 4 (1977), 452–473. https://doi.org/10.1086/jar.33.4.

3629752

[34] M. Zarei and K. A. Samani. 2009. Eigenvectors of network complement reveal

community structure more accurately. Physica A 388, 8 (2009), 1721–1730. https:

//doi.org/10.1016/j.physa.2009.01.007

[35] J. Zhu, Y. Liu, Y. Zhang, X. Liu, Y. Xiao, S. Wang, and X. Wu. 2017. Exploring

anti-community structure in networks with application to incompatibility of

traditional Chinese medicine. Physica A 486 (2017), 31–43. https://doi.org/10.

1016/j.physa.2017.04.175

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1137/0603056
https://doi.org/10.1093/sf/55.1.93
https://doi.org/10.1093/sf/55.1.93
https://doi.org/10.1016/j.ins.2014.02.040
https://doi.org/10.1016/j.ins.2014.02.040
https://doi.org/10.2307/1999405
https://doi.org/10.1016/j.laa.2017.12.001
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1103/PhysRevE.70.025101
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1007/978-3-540-72586-2_95
https://doi.org/10.1109/ICDM.2007.42
https://doi.org/10.1080/0022250X.1971.9989788
https://doi.org/10.1080/0022250X.1971.9989788
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.110.148701
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://arxiv.org/abs/1705.10225
https://arxiv.org/abs/1705.10225
https://doi.org/10.1109/ICTAI.2009.58
https://doi.org/10.2307/2284239
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/j.physa.2012.11.003
https://doi.org/10.1109/31.1742
https://arxiv.org/abs/0711.0491
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1103/PhysRevE.80.036115
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1016/j.physa.2009.01.007
https://doi.org/10.1016/j.physa.2009.01.007
https://doi.org/10.1016/j.physa.2017.04.175
https://doi.org/10.1016/j.physa.2017.04.175

	Abstract
	1 Introduction
	2 Related Work
	3 Models and Algorithms
	3.1 Modularity and Anti-modularity
	3.2 Baseline Algorithms
	3.3 Greedy Algorithms
	3.4 Vertex Similarity Algorithms

	4 Evaluation
	4.1 Synthetic Evaluation Data
	4.2 Evaluation Metrics
	4.3 Anti-community Detection Evaluation
	4.4 Runtime Evaluation
	4.5 Performance Discussion

	5 Exploratory Analysis
	5.1 Zachary's Karate Club Network
	5.2 Atomic Spectral Line Network of Helium

	6 Summary and Outlook
	Acknowledgments
	References

